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Abstract

Knowledge spillovers are a common rationale for government support of innovation, yet
evidence on their magnitude remains limited. In this paper, I quantify the wedge that spillovers
create between social and private rates of return to innovation. To do so, I build a novel
semi-endogenous growth model featuring multiproduct firms and endogenous exit of products.
In equilibrium, product exit exhibits negative selection and is preceded by a gradual decline in
market share, consistent with facts I document using barcode-level data. Through the lens of
the model, these dynamics of product exit are informative about spillovers: by accelerating
growth in the quality of new products, stronger spillovers increase the rate at which incumbent
products lose market share and exit. Since comprehensive datasets track firms rather than
products, I leverage the model to infer the wedge created by spillovers from data on firm exit by
age. Across U.S. private nonfarm businesses, I infer spillovers that drive a 16 percentage point
wedge between the social and private rates of return to innovation.
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1 Introduction

Knowledge spillovers have long been recognized as a rationale for government support of innovation
(Arrow, 1962). This conventional wisdom recognizes the aggregate stock of knowledge as an input
into the production of new ideas, so an individual inventor does not fully capture the social value
of their innovation. Quantifying how large these spillovers are is therefore a key ingredient for
informed innovation policy (Atkeson and Burstein, 2019; Akcigit, Hanley and Stantcheva, 2022).

Yet, evidence on the magnitude of spillovers “is quite thin” (Bryan and Williams, 2021, p. 290).
Moreover, the limited evidence available relies on patents, thereby not only missing unpatented
innovations like the polio vaccine, the World Wide Web, and Linux, but also systematically skewing
toward manufacturing: the sector accounts for 10% of GDP (BEA, 2025) and TFP growth (BLS,
2025) but 64% of patenting (NCSES, 2023).

This paper quantifies the wedge between social and private rates of return to innovation created
by knowledge spillovers. Instead of patents or reported R&D, I use data on firm exit by age covering
the universe of U.S. private nonfarm businesses. To infer the wedge from these exit patterns, I
develop a new semi-endogenous growth model with multiproduct firms and selection into product
exit. I find substantial spillovers, driving a 16 percentage point wedge between the social and
private rates of return to innovation.

To appreciate why exit rates are informative about spillovers, consider today’s inventors creating
new products. Compared to their predecessors, they have access to a stock of knowledge made
larger by recent innovations. How much does this larger knowledge stock improve the quality of
the products they invent? In search for the answer, I turn to dynamics in product markets. The
rationale is simple: if higher quality products render lower quality ones obsolete, then stronger
spillovers—by accelerating growth in the quality of new products—accelerate the rate at which
incumbent products lose market share and exit.

Building on this intuition to quantify spillovers requires a model for two reasons. First, the
thought experiment above took as given how much knowledge is available to inventors, but this stock
is accumulated endogenously through innovation. Accordingly, I need a model that endogenizes
this accumulation process and formalizes how the resulting spillovers translate into a higher product
exit rate. Second, comprehensive datasets track the exit of firms rather than products, and firms exit
for a variety of reasons. Therefore, I need a model to guide the identification of the spillover-driven
product exit from the observable dynamics of firm exit.

To meet these requirements, I develop a new model of long run growth and firm dynamics.
It features product innovation, where the quality of each new product (variety) is drawn from an
entry distribution. Such innovations increase the aggregate stock of knowledge, and spillovers are
modeled as a higher knowledge stock leading to a first-order stochastic dominance improvement
in the entry distribution (Kortum, 1997). While these innovations allow firms to expand, the
endogenous shutdown of existing products, à la Hopenhayn (1992), acts as a countervailing force,
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culminating in a firm’s exit upon the shutdown of its final product. These product exits are driven
both by the accumulation of idiosyncratic shocks to demand and competition from newer—and on
average better—products that are imperfect substitutes for existing ones.

The model delivers an intuitive characterization of the wedge between social and private returns
to innovation created by knowledge spillovers. Along the balanced growth path of my model, the
social rate of return exceeds the private one. The resulting wedge is the product of two terms: (i)
the spillover elasticity, governing the extent to which a higher stock of knowledge improves the
entry distribution, and (ii) the pace of knowledge accumulation, which, in my semi-endogenous
growth model, is tied to the rate of population growth.

Dynamics of product exit are informative about this wedge. The key is that a firm shuts down
a product when its market share becomes too small to justify incurring the labor-denominated
overhead cost. Stronger spillovers accelerate this process: by accelerating quality growth across
successive generations of products, they quicken the substitution toward newer ones, accelerating
the gradual erosion of an incumbent product’s market share. This gradual decline, however, is not
the only driver of product exit; products are also subject to idiosyncratic shocks that can cause a
sudden drop in demand. A high product exit rate could therefore reflect either strong spillovers or
high volatility. It is the gradual component of product exit, due to drift down to the exit threshold,
that is informative about the wedge of interest.

As product-level data are available for only a few sectors, I leverage more widely available data
on firm exit by age to quantify this wedge. This is possible because product dynamics aggregate to
determine firm dynamics: a firm starts with a single product, attempts to grow its portfolio via
R&D, and exits upon shutdown of its final product. As a result, the model’s profile of firm exit
by age is governed by three statistics: (i) the extent of product exit due to downward drift (the
component informative about the wedge), (ii) the extent of product exit due to shocks, and (iii) the
endogenous rate at which an incumbent firm adds a product to its portfolio. These three statistics
are separately identified because they leave distinct signatures on the firm exit hazard over its life
cycle: (i) a higher product exit due to downward drift raises firm exit at all ages, (ii) a higher product
exit due to shocks increases exit among young firms but, due to selection, decreases it among older
ones, and (iii) a higher rate of product addition has little effect on young single-product firms but
lowers the exit for mature firms by increasing their average number of products.

Before applying this approach, I provide direct evidence from the consumer packaged goods
sector for the two features of product exit that my approach leverage to quantify spillovers: that
product exit features negative selection and unfolds gradually. Specifically, I document four facts
using the NielsenIQ Retail Scanner dataset, which provides high-frequency data at the barcode
(UPC) level. First, products with higher sales are less likely to exit. Second, the product exit rate
is lower among firms with more products. Third, in the lead up to exit, a product’s sales decline
gradually. Finally, this gradual decline is driven by a collapse in quantity sold while relative price
falls only modestly, a pattern consistent with a negative residual demand shock to the product. Taken
together, these facts provide support for product exit featuring negative selection and unfolding
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gradually. This evidence lends credibility to my approach, which infers the wedge created by
spillovers from the extent of product exit due to downward drift toward the exit threshold.

I apply this novel approach to quantifying spillovers using data covering the universe of U.S.
private nonfarm businesses. Targeting the profile of firm exit at ages 1 through 19, I find that
knowledge spillovers create a 16 percentage point wedge between the social and private rates of
return to R&D. Framing the result as a social-private wedge in the rate of return is advantageous for
two main reasons. First, it bypasses the need to take a stance on the relevant rate of population
growth. Second, it facilitates comparison with the canonical estimate due to Bloom, Schankerman
and Van Reenen (2013). While the gap I estimate is smaller than their 20-45 percentage point range,
it is still substantial. In canonical models, such a gap leads to vast underprovision of innovation
(Jones and Williams, 1998) and means there are potentially large welfare benefits from government
support for R&D (Atkeson and Burstein, 2019).

I substantiate this headline finding through a series of validation and robustness exercises. First,
to assuage the concern that a taste for novelty drives my results, I show that the estimated wedge
tends to be largest in sectors where narrative evidence points to an important role for knowledge
spillovers. Second, to bolster confidence in the quantitative aspects of my results, I highlight the
model’s fit to untargeted moments. Finally, I verify that for food manufacturing, where both product
and firm data are available, I obtain similar estimates of the wedge when doing the quantification
with product versus firm data.

After highlighting my contribution to the literature, the rest of the paper proceeds as follows.
Section 2 lays out the model, derives the wedge between social and privates rates of return to R&D,
and formalizes how the dynamics of product exit are informative about this wedge. Section 3 then
characterizes the model’s firm dynamics, a necessary step to quantify this wedge when only firm
data are available. Section 4 provides empirical evidence corroborating my treatment of product
exit. Section 5 puts this apparatus to work using data on the U.S. private nonfarm businesses,
presenting the headline result as well as those from a series of robustness and validation exercises.
Finally, Section 6 concludes.

Contribution to the literature. The paper’s theoretical contribution is a new quantitative growth
model with multiproduct firms and selection into exit at the product level. Creative destruction
plays a prominent role in this model, which relates my work to the large literature on quality
ladder models of Schumpeterian growth, building on Aghion and Howitt (1992) and Grossman and
Helpman (1991), and reviewed in Aghion, Akcigit and Howitt (2014). More recent contributions
include Acemoglu, Akcigit, Alp, Bloom and Kerr (2018), Akcigit and Kerr (2018), Peters (2020),
Cavenaile, Celik and Tian (2025), and Berlingieri, De Ridder, Lashkari and Rigo (2025). In contrast
to this literature, obsolescence unfolds gradually in my model because new and incumbent products
are imperfect substitutes. This choice is motivated by the evidence I document using barcode level
data, as well as the findings of Foster, Haltiwanger and Syverson (2008) and Argente, Lee and
Moreira (2024). As a consequence, knowledge spillovers are the only source of inefficiency in my
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model. This is because, in addition to the usual negative business stealing externality, there is a
positive consumer surplus externality due to love of variety (Acemoglu, 2009); with CES demand,
the two externalities exactly offset, as in Melitz (2003). While this is a special property of the
CES aggregator (Dhingra and Morrow, 2019), it is convenient for the purposes of isolating and
quantifying knowledge spillovers.

In modeling product dynamics, I build on Luttmer (2007). A first notable difference is that I
allow for multiproduct firms. In addition to the evidence on the ubiquity of multiproduct firms
(Bernard, Redding and Schott, 2010; Broda and Weinstein, 2010; Arkolakis, Ganapati and Muendler,
2021; Argente, Lee and Moreira, 2018), this enables lower volatility of firm growth among larger
firms (Sutton, 2002; Arkolakis, 2016). The second is that Luttmer (2007) models entrants drawing
from the incumbent distribution while I follow Kortum (1997) in having them draw from an
endogenously shifting distribution. As a result, our models yield diverging comparative statics: in
my model, higher volatility of shocks does not increase the growth rate, product entry and exit rates
are not affected by the cost of entry, and the resulting growth rate is semi-endogenous.

My modeling of multiproduct firms builds on Klette and Kortum (2004) and Luttmer (2011): a
firm is a collection of products, each of which, gives “birth” to a new product at a constant Poisson
rate in equilibrium. The key difference is that, because product exit is not a Poisson process in my
model, the firm’s number of products evolves as a non-Markovian branching process. Consequently,
the stationary firm size distribution is the solution to an infinite system of coupled partial differential
equations. The payoff is that this modeling of product exit, and its consequences through the lens
of my model, are corroborated by facts I document as well as empirical evidence from Bernard,
Redding and Schott (2010) and Hottman, Redding and Weinstein (2016).

As my model features semi-endogenous growth (Jones, 1995a), it is consistent with the
aggregate evidence on weak scale effects (Jones, 1995b; Peters, 2022), the firm-level evidence
on declining research productivity (Bloom, Jones, Van Reenen and Webb, 2020), and with the
literature emphasizing the role of demographics in explaining the slowdown of business dynamism
(Karahan, Pugsley and Şahin, 2024; Hopenhayn, Neira and Singhania, 2022). Unlike the second
generation of endogenous growth models (Dinopoulos and Thompson, 1998; Peretto, 1998; Young,
1998; Howitt, 1999; Peters and Walsh, 2024; Aghion, Bergeaud, Boppart and Brouillette, 2025),
my model features semi-endogenous growth even along the quality (vertical) dimension.

That the extent of spillovers has a bearing on dynamics in product markets is not a peculiar
feature of my model. Akcigit and Ates (2023) argue declining knowledge diffusion from frontier to
laggard firms can quantitatively explain a large share of the recent slowdown in business dynamism
in the U.S. (Decker, Haltiwanger, Jarmin and Miranda, 2016; Akcigit and Ates, 2021). The model
they use to reach this conclusion is quite different than mine, as it is a step-by-step innovation
model—à la Aghion, Harris and Vickers (1997), Aghion, Harris, Howitt and Vickers (2001),
Aghion, Bloom, Blundell, Griffith and Howitt (2005), and Acemoglu and Akcigit (2012)—with
Bertrand duopoly in each sector.

The paper’s empirical contribution is the quantification of knowledge spillovers using this new
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theoretical framework. This relates my work to a large body of innovation research, reviewed in
Bryan and Williams (2021), for which a central challenge is that knowledge flows are invisible.
Apart from papers focusing on specific industries like Griliches (1958) and Irwin and Klenow
(1994), the literature has relied on patent data to quantify spillovers. Specifically, following Jaffe,
Trajtenberg and Henderson (1993), many have used patent citations as a paper trail for knowledge
flows and hence a proxy for spillovers. Compared to my approach, an advantage of using patent
citations is the ability to recover the network of spillovers (Acemoglu, Akcigit and Kerr, 2016),
which is necessary to characterize optimal sector-specific (Liu and Ma, 2021) or firm-specific
(König, Liu and Zenou, 2019) R&D subsidies. However, as Jaffe, Trajtenberg and Fogarty (2000)
put it, patent citations are at best a noisy signal of spillovers; a conclusion they reach based on
survey evidence on the familiarity of inventors with patents they cite. In fact, among U.S. patents
granted between 2001 and 2003, Alcácer, Gittelman and Sampat (2009) find that examiners added,
on average, 63% of citations and all citations in 40% of the cases, although Bryan, Ozcan and
Sampat (2020) caveat that this is less of a concern for in-text (as opposed to front-page) citations.

Another common approach in this literature to “detect the path of spillovers in the sands of data”
(Griliches, 1992, p. S36) is to leverage variation in proximity between firms. Specifically, Jaffe
(1986) uses the patent classification system to define a technological proximity metric between
firms, and then looks at the effect of a firm’s R&D on R&D by its “technological neighbors”.
Bloom, Schankerman and Van Reenen (2013) enrich this approach by using line of business data
from Compustat to complement technological proximity with proximity in product markets, which
allows them to separately identify knowledge spillovers and business stealing. Lucking, Bloom
and Van Reenen (2019) extend the analysis to more recent years and Lychagin, Pinkse, Slade and
Van Reenen (2016) enrich this approach with a third dimension of proximity tied to geographic
location. Zacchia (2019) uses an alternative definition of technological proximity between two
firms, based on the share of the two firms’ inventors who have previously co-patented across firms,
and similarly finds a social rate of return twice as large as the private one. Arqué-Castells and
Spulber (2022) show that accounting for voluntary technology transfers between firms reduces the
gap between the social and private rates of return from 40 to 30 percentage points.

My approach is complementary to these and motivated by the literature acknowledging the
limitations of patent and R&D data. First, the propensity to patent an invention varies across
industries (Levin, Klevorick, Nelson and Winter, 1987): manufacturing accounts for 64% of patents
issued to US companies and 57% of reported R&D (NCSES, 2023). Second, even within sectors
where patenting is common, larger firms are more likely to patent an innovation (Cohen, Nelson
and Walsh, 2000; Mezzanotti and Simcoe, 2023; Argente, Baslandze, Hanley and Moreira, 2023).
Third, firms may strategically relabel expenses as R&D (Chen, Liu, Suárez Serrato and Xu, 2021),
with these incentives varying over time as the tax code changes (Cowx, Lester and Nessa, 2024).
My approach also complements Jones and Summers (2021), who show that—through the lens of
endogenous growth theory—the long run growth rate in TFP divided by the share of GDP spent on
R&D is an estimate of the social rate of return to R&D.
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2 Model

This section lays out the model and derives two key results. The first characterizes the wedge
between social and private returns to R&D created by knowledge spillovers. The second formalizes
how the dynamics of product exit are informative about the magnitude of this wedge. Appendix A
summarizes all the symbols I introduce when setting up and solving the model.

2.1 Economic Environment

Preferences and Technology Time is continuous and population 𝑁𝑡 grows at rate 𝜂 > 0:

¤𝑁𝑡 = 𝜂𝑁𝑡 . (1)

Each individual inelastically supplies a unit of labor and household preferences are given by

𝑈0 =

∫ ∞
0
𝑒−𝜌𝑡𝑁𝑡

𝑐
1−𝛾
𝑡 − 1
1 − 𝛾 𝑑𝑡 ,

where consumption 𝑐𝑡 is a CES aggregate over a continuum of imperfectly substitutable products

𝑐𝑡 =

[∫
𝑝∈Ω𝑡

(
𝑄𝑝𝑡𝑐𝑝𝑡

) 𝜎−1
𝜎 𝑑𝑝

] 𝜎
𝜎−1

.

Here, 𝑄𝑝𝑡 is the quality of product 𝑝 at 𝑡, 𝑐𝑝𝑡 its quantity consumed, 𝜎 > 1 the elasticity of
substitution, and Ω𝑡 the set of products supplied at 𝑡. This set evolves over time as a result of the
creation of new products and the endogenous exit of existing ones.

Each of these products is supplied by one, potentially multiproduct, firm. The production
technology features a per-product fixed overhead cost F , denoted in labor units. If unpaid,
production of that product is irreversibly shut down. The marginal cost of production is otherwise
constant, so that quantity produced 𝑌𝑝𝑡 is linear in production labor employed 𝐿𝑝𝑡 :

𝑌𝑝𝑡 = 𝐴𝐿𝑝𝑡 .

Innovation For a product to be supplied, the underlying blueprint must have already been
developed. Such innovations are carried out by entering as well as incumbent firms.

All firms begin as single product firms. Motivated by the findings of Klenow and Li (2025),
there is a labor-denominated firm entry cost. Specifically, an individual attempting to set up a new
firm—by developing the blueprint for a new product—succeeds at Poisson rate 𝜀. Subsequently,
this single product firm can expand its portfolio through R&D. Hiring 𝐼𝑝 R&D workers leads to the
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development of a new product at Poisson rate:

𝜄
(
𝐼𝑝

)
= 𝜗

𝐼1−𝛿𝑝

1 − 𝛿 where 𝛿 ∈ (0, 1) ; 𝜗 > 0. (2)

R&D investments by incumbents thus run into diminishing returns.

Once the firm becomes multiproduct, it operates as a collection of product lines. As with
production, innovation is organized around existing blueprints: for each product 𝑝 in its portfolio, a
firm chooses how many R&D workers 𝐼𝑝 to hire. Using the superposition property of the Poisson
process, a firm 𝑓 currently producing the set of products {𝑝1, . . . , 𝑝𝑛} succeeds in adding a product
to its portfolio with Poisson arrival rate ∑︁

𝑝∈{𝑝1,...,𝑝𝑛}
𝜄
(
𝐼𝑝

)
.

Equivalently, one could write down, as in Klette and Kortum (2004), a firm-level idea production
function with constant returns to scale in firm-wide R&D labor and number of products. The
product-level formulation allows me to defer the introduction of firm level variables until Section 3.

Knowledge spillovers, which I seek to quantify, stem from the cumulative stock of innovation
being an input into the production of new ideas. With innovation taking the form of product
development, the cumulative stock of innovation is the mass of product blueprints already developed,
which I denote by 𝐾𝑡 . Its law of motion is:

¤𝐾𝑡 = 𝜀𝑆𝑡 +
∫
𝑝∈Ω𝑡

𝜄
(
𝐼𝑝𝑡

)
𝑑𝑝 . (3)

The first term reflects the flow of new blueprints developed by entrants, as 𝑆𝑡 is the mass of
individuals working as startup entrepreneurs and 𝜀 is the Poisson rate an entrepreneur succeeds.
The second term reflects the flow of new blueprints developed by incumbents.

Product Quality Whether developed by an entrant or incumbent, the quality of a new product at 𝑡
is drawn from an entry distribution with complementary cumulative distribution function (CCDF):

𝐹
𝐸

𝑡 (𝑄) = Pr (Draw𝑡 > 𝑄) =

𝐾𝜃𝑡 𝑄

−𝛼 if 𝑄 > 𝐾
𝜃
𝛼

𝑡

1 otherwise
with 𝛼 > 0 and 𝜃 ≥ 0.

In this specification, due to Kortum (1997), 𝛼 is the time-invariant Pareto shape of the entry
distribution, with a higher value for 𝛼 corresponding to a thinner tail. 𝜃 is the spillover elasticity: it
governs how strongly a higher cumulative stock of innovation improves—in a first-order stochastic
dominance sense—the distribution of quality for new products. For example, when there are no
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K
θ
α

t K
θ
α

t+d t
Quality Q of new product

Pr(Draw >Q)

at t +d t
at t +d t

Figure 1: Improvement in entry distribution due to spillovers when 𝜃 > 0

spillovers, 𝜃 = 0 and the entry distribution is time-invariant. In contrast, when 𝜃 > 0, the flow of
new blueprints today increases 𝐾𝑡 , which in turn improves the entry distribution inventors draw
from in the future, as shown in Figure 1.

After this initial draw, the product’s quality 𝑄𝑝𝑡 evolves as a geometric Brownian motion with
increments that are independent across the continuum of products:

𝑑 ln𝑄𝑝𝑡 = 𝛽𝑑𝑡 + 𝜈𝑑𝐵𝑝𝑡 .

Resource Constraints For each product 𝑝, aggregate consumption cannot exceed production:

𝑁𝑡𝑐𝑝𝑡 ≤ 𝑌𝑝𝑡 .

Labor is the only input in the economy. Each individual inelastically supplies a unit of labor and
can work for an incumbent as a production, overhead, or R&D worker. Alternatively, the individual
can choose to be a startup entrepreneur and attempt to create a new firm. The resource constraint
on labor is thus given by: ∫

𝑝∈Ω𝑡

(
𝐿𝑝𝑡 + F + 𝐼𝑝𝑡

)
𝑑𝑝 + 𝑆𝑡 = 𝑁𝑡 . (4)

Table 1 summarizes the economic environment of the model. The allocation decision in this
economy is how to divide labor among its competing uses, which governs how the set of products
Ω𝑡 consumed by households evolves over time. To appreciate the economic trade-offs involved,
consider the benefit of a marginal unit of labor in each of its uses. Allocating more labor to
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Table 1: Economic Environment

Population ¤𝑁𝑡 = 𝜂𝑁𝑡 𝜂 > 0

Preferences 𝑈0 =
∫∞
0
𝑒−𝜌𝑡𝑁𝑡

𝑐
1−𝛾
𝑡 −1
1−𝛾 𝑑𝑡 𝜌 > 𝜂

Consumption 𝑐𝑡 =

[∫
𝑝∈Ω𝑡

(
𝑄𝑝𝑡𝑐𝑝𝑡

) 𝜎−1
𝜎 𝑑𝑝

] 𝜎
𝜎−1

𝜎 > 1

Production Overhead F (exit if unpaid) F > 0

𝑌𝑝𝑡 = 𝐴𝐿𝑝𝑡

Flow of new blueprints ¤𝐾𝑡 = 𝜀𝑆𝑡 +
∫
𝑝∈Ω𝑡

𝜗
1−𝛿 𝐼

1−𝛿
𝑝𝑡 𝑑𝑝 𝜗 > 0 ; 0 < 𝛿 < 1

Entry distribution 𝐹
𝐸

𝑡 (𝑄) = 𝐾𝜃𝑡 𝑄−𝛼 𝜃 ≥ 0 ; 𝛼 > 0

Set of products Ω𝑡 evolves through entry & exit

Quality evolution 𝑑 ln𝑄𝑝𝑡 = 𝛽𝑑𝑡 + 𝜈𝑑𝐵𝑝𝑡 𝜈 ≥ 0

Resource constraints 𝑁𝑡𝑐𝑝𝑡 = 𝑌𝑝𝑡

𝑆𝑡 +
∫
𝑝∈Ω𝑡

(
𝐿𝑝𝑡 + F + 𝐼𝑝𝑡

)
𝑑𝑝 = 𝑁𝑡

Notes: The scarce resource to allocate in this economy is labor. The decision of how to divide this
resource among its competing uses in production (𝐿), overhead (F ), incumbent innovation (𝐼), and
entry (𝑆) governs how the the set of products Ω𝑡 consumed evolves over time.

production increases the output of products currently supplied. Allocating more labor to overhead
expands the range of products that remain active. Because of the love of variety effect, both of
these margins enhance current consumption. In contrast, allocating more labor to R&D or entry
expands the stock of blueprints, thereby increasing the number and quality of products available for
consumption in the future.

2.2 Decision Problems

To pin down how labor is allocated across its competing uses, I consider the following market struc-
ture. Each differentiated product is supplied by a single, potentially multiproduct, monopolistically
competitive firm. There are no barriers to firm entry and the frictionless labor market is perfectly
competitive. The consumption bundle serves as the numeraire so its price is normalized to unity.
In terms of assets, in addition to the blueprints which entitle their owners to a stream of dividends,
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there is a risk-free bond in zero-net supply.

I characterize equilibrium labor allocations and the evolution of the product set Ω𝑡 without
explicitly tracking firms. This is possible because a firm’s problem is separable across its products.
On the technology side, there are no production or innovation synergies across a firm’s portfolio.
On the demand side, firms are atomistic and the elasticity of substitution is constant across products,
so there are no cannibalization effects. The distribution of firms matters only for outcomes such as
firm entry and exit rates, which I return to in Section 3.

Household’s problem Given a path of interest rates 𝑟𝑡 , wages 𝑤𝑡 , and product prices 𝑃𝑝𝑡 , the
household chooses consumption of different products 𝑝 to maximize lifetime utility subject to an
intertemporal budget constraint:

max
{𝑐𝑝𝑡 }

∫ ∞
0
𝑒−𝜌𝑡𝑁𝑡

𝑐
1−𝛾
𝑡 − 1
1 − 𝛾 𝑑𝑡 subject to 𝑐𝑡 =

[∫
𝑝∈Ω𝑡

(
𝑄𝑝𝑡𝑐𝑝𝑡

) 𝜎−1
𝜎 𝑑𝑝

] 𝜎
𝜎−1

¤𝑎𝑡 = (𝑟𝑡 − 𝜂) 𝑎𝑡 + 𝑤𝑡 −
∫
𝑝∈Ω𝑡

𝑃𝑝𝑡𝑐𝑝𝑡𝑑𝑝 (5)

where 𝑎𝑡 is the individual’s asset holding. Summing 𝑐𝑝𝑡 across individuals yields the following
demand schedule for product 𝑝:

𝑌𝑝𝑡 = 𝑄
𝜎−1
𝑝𝑡 𝑃−𝜎𝑝𝑡 𝑁𝑡𝑐𝑡 .

Incumbent’s problem For each product in its portfolio, a firm chooses pricing, production, and
R&D to maximize the expected present discounted value of dividends from that product. These
consist of profits from operating the product and an option value of expanding the firm’s portfolio
through R&D. They accrue until the firm optimally chooses to irreversibly shut down production
with this product. With 𝑉𝑡 (𝑄𝑝𝑡) the value at time 𝑡 of a product with quality 𝑄𝑝𝑡 , the firm solves
the following optimal stopping time problem (Dixit and Pindyck, 1994; Stokey, 2009):

𝑉𝑡 (𝑄𝑝𝑡) = max
𝑇
{𝑃𝑝𝑡 }
{𝐼𝑝𝑡 ,𝐿𝑝𝑡 }

E𝑡


∫ 𝑇

𝑡

𝑒−
∫ 𝜏
𝑡
𝑟𝑠𝑑𝑠


𝑃𝑝𝜏𝑌𝑝𝜏 − 𝑤𝜏

(
F + 𝐿𝑝𝜏

)︸                        ︷︷                        ︸
operating profit

+

option value︷                                     ︸︸                                     ︷
𝜗
𝐼1−𝛿𝑝𝜏

1 − 𝛿︸  ︷︷  ︸
arrival rate of
new product

∫
𝑉𝜏 (𝑄) 𝑑𝐹𝐸𝑡 (𝑄)︸                ︷︷                ︸
expected value
of new product

−𝑤𝜏 𝐼𝑝𝜏


𝑑𝜏


subject to, for all 𝑡 ≤ 𝜏 < 𝑇,


𝑌𝑝𝜏 = 𝐴𝐿𝑝𝜏

𝑌𝑝𝜏 = 𝑄
𝜎−1
𝑝𝜏 𝑃−𝜎𝑝𝜏 𝑁𝜏𝑐𝜏

𝑑 ln𝑄𝑝𝜏 = 𝛽𝑑𝜏 + 𝜈𝑑𝐵𝑝𝜏

(6)

The value of a firm is obtained by summing the value of products in its portfolio.
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For endogenous exit to occur, the option value of R&D expansion must not exceed the overhead
cost. In essence, the effective fixed cost is the overhead net of the option value, and it must be
strictly positive for some products to be optimally shut down. Assumption 1 below provides a
condition on parameters that guarantees this holds along the equilibrium path. As in Hopenhayn
(1992), endogenous exit is then characterized by a quality threshold, denoted 𝑄

𝑡
, below which firms

choose to stop supplying a product.

Firm Entry Since there are no barriers to entry, individuals must be indifferent between
employment and entrepreneurship in equilibrium. With the wage as the outside option, this requires:

𝑆𝑡

(
𝑤𝑡 − 𝜀

∫
𝑉𝑡 (𝑄)𝑑𝐹𝐸𝑡 (𝑄)

)
= 0 . (7)

Along an interior equilibrium (𝑆𝑡 > 0), the expected payoff from attempting entry equals the wage.

2.3 Equilibrium

The model’s dynamics center on the evolution of the product set Ω𝑡 . Since quality is the only
relevant source of heterogeneity, this set can be represented by a distribution over product qualities.
With stationarity in mind, instead of absolute quality it is helpful to work with a product’s log-quality
relative to the exit threshold as its state variable:

𝑞𝑝𝑡 = ln

(
𝑄𝑝𝑡

𝑄
𝑡

)
.

I denote the corresponding cross-sectional measure by 𝑚(𝑞, 𝑡). Using Ito’s lemma,

𝑑𝑞𝑝𝑡 =
(
𝛽 − 𝑔𝑄𝑡

)
𝑑𝑡 + 𝜈𝑑𝐵𝑝𝑡 , (8)

where 𝑔𝑄𝑡 is the instantaneous growth rate of 𝑄
𝑡
at 𝑡. It follows that 𝑚(0, 𝑡) = 0 and for 𝑞 > 0 the

law of motion for 𝑚(𝑞, 𝑡) is given by a Kolmogorov Forward Equation (KFE):

¤𝑚(𝑞, 𝑡) = −
(
𝛽 − 𝑔𝑄𝑡

) 𝜕𝑚(𝑞, 𝑡)
𝜕𝑞︸                     ︷︷                     ︸

Drift

+ 𝜈
2

2

𝜕2𝑚(𝑞, 𝑡)
𝜕𝑞2︸          ︷︷          ︸

Diffusion

+ ¤𝐾𝑡𝐾𝜃𝑡 𝑄−𝛼𝑡 𝛼𝑒−𝛼𝑞 1{𝑞≥ 𝜃𝛼 ln𝐾𝑡 −ln𝑄𝑡}︸                                    ︷︷                                    ︸
Entry

. (9)

Here, the measure of products entering with log-relative quality 𝑞 is simply the flow of new
blueprints ¤𝐾𝑡 multiplied by the density of draws at that relative quality.

Definition 1. Given initial population 𝑁0, stock of existing blueprints 𝐾0, and distribution of
product log-relative qualities 𝑚(𝑞, 0), an equilibrium consists of time paths for 𝑁𝑡 , 𝐾𝑡 , 𝑚(𝑞, 𝑡), 𝑄

𝑡
,

prices {𝑟𝑡 , 𝑤𝑡 , 𝑃𝑝𝑡 , 𝑉𝑡 (𝑄𝑝𝑡)} and allocations {𝑐𝑡 , 𝑎𝑡 , 𝑐𝑝𝑡 , 𝑌𝑝𝑡 , 𝐿𝑝𝑡 , 𝐼𝑝𝑡 , 𝑆𝑡} such that for all 𝑡:
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1. 𝑐𝑡 , 𝑎𝑡 , and 𝑐𝑝𝑡 solve the household’s problem (5)

2. 𝐿𝑝𝑡 , 𝐼𝑝𝑡 , 𝑃𝑝𝑡 , 𝑉𝑡
(
𝑄𝑝𝑡

)
, and 𝑄

𝑡
solve the incumbent’s problem (6)

3. 𝑆𝑡 satisfies the free entry condition (7)

4. 𝑌𝑝𝑡 satisfies the market clearing condition for product 𝑝, 𝑌𝑝𝑡 = 𝑁𝑡 𝑐𝑝𝑡

5. 𝑤𝑡 clears the labor market (4)

6. 𝑟𝑡 clears the asset market, 𝑁𝑡𝑎𝑡 =
∫
𝑉𝑡

(
𝑄
𝑡
𝑒𝑞

)
𝑚(𝑞, 𝑡)𝑑𝑞

7. 𝑁𝑡 , 𝐾𝑡 , and 𝑚(𝑞, 𝑡) evolve respectively according to equations (1), (3), and (9).

Solving. In equilibrium, consumption per capita and the wage rate are then given by

𝑐𝑡 = 𝐴𝑀
1
𝜎−1
𝑡 𝑄𝑡

𝐿𝑡

𝑁𝑡
and 𝑤𝑡 =

𝜎 − 1
𝜎

𝐴𝑀
1
𝜎−1
𝑡 𝑄𝑡 , (10)

where 𝐿𝑡 denotes aggregate production labor, 𝑀𝑡 the measure of products supplied and 𝑄𝑡 the
power mean of their qualities:

𝑀𝑡 ≡
∫ ∞
0
𝑚(𝑞, 𝑡)𝑑𝑞 and 𝑄𝑡 ≡

(
1

𝑀𝑡

∫
𝑝∈Ω𝑡

𝑄𝜎−1
𝑝𝑡 𝑑𝑝

) 1
𝜎−1

= 𝑄
𝑡

(
1

𝑀𝑡

∫ ∞
0
𝑒(𝜎−1)𝑞𝑚(𝑞, 𝑡)𝑑𝑞

) 1
𝜎−1

.

Equation 10 highlights the two potential sources of productivity growth: expanding varieties, which
contributes to growth due to love of variety, and increasing average quality of products consumed.

Moving on to the model’s dynamics, note that the innovation technology in (2) satisfies an Inada
condition at 0, so that an incumbent always finds it optimal to do some R&D. Along an interior
equilibrium (𝑆𝑡 > 0), this level of incumbent innovation per product is constant:

Incumbent’s FOC: 𝑤𝑡 = 𝜗𝐼
−𝛿
𝑝𝑡

∫
𝑉𝑡 (𝑄) d𝐹𝐸𝑡 (𝑄)

Free entry condition: 𝑤𝑡 = 𝜀

∫
𝑉𝑡 (𝑄) d𝐹𝐸𝑡 (𝑄)

 =⇒ 𝐼𝑝𝑡 = 𝐼 ≡
(
𝜗

𝜀

) 1
𝛿

. (11)

Thus the flow of new blueprints at 𝑡 is simply

¤𝐾𝑡 = 𝜀𝑆𝑡 +
𝜀

1 − 𝛿 𝐼𝑀𝑡 . (12)

The scaling by (1 − 𝛿)−1 > 1 reflects that, while the marginal R&D worker has to be as productive
as a startup entrepreneur in equilibrium, the infra-marginal ones will be more productive. Plugging
the equilibrium level of incumbent R&D back into the firm’s objective function yields an option

value from R&D expansion equal to 𝑂𝑤𝑡 where 𝑂 ≡ 𝛿
1−𝛿

(
𝜗
𝜀

) 1
𝛿

.
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Assumption 1. Endogenous exit requires F > 𝑂, so the parameters need to satisfy:

F >
𝛿

1 − 𝛿

(
𝜗

𝜀

) 1
𝛿

.

Finally, denoting by 𝑉 (𝑞, 𝑡) the value at 𝑡 of a product with log-relative quality 𝑞, this value
function satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:1

𝑉 (0, 𝑡) = 𝜕𝑉 (0, 𝑡)
𝜕𝑞

= 0 and ∀𝑞 > 0, 𝑟𝑡𝑉 (𝑞, 𝑡) = 𝑤𝑡


1

𝜎 − 1
𝐿𝑡

𝑀𝑡

(
𝑄
𝑡

𝑄𝑡

)𝜎−1
𝑒(𝜎−1)𝑞 − (F −𝑂)


+ ¤𝑉 (𝑞, 𝑡) +

(
𝛽 − 𝑔𝑄𝑡

) 𝜕𝑉 (𝑞, 𝑡)
𝜕𝑞

+ 𝜈
2

2

𝜕2𝑉 (𝑞, 𝑡)
𝜕𝑞2

.

(13)

2.4 Balanced Growth Path

Definition 2. A balanced growth path (BGP) is an allocation with

1. stationary labor allocations: ¤𝐿𝑡
𝐿𝑡

=
¤𝑆𝑡
𝑆𝑡

=
¤𝑀𝑡
𝑀𝑡

= 𝜂 ;

2. growth in the quality threshold 𝑄
𝑡
at constant rate 𝑔𝑄 ≥ 0;

3. a stationary distribution of relative qualities:

𝑚(𝑞, 𝑡) = 𝑓𝑝 (𝑞)𝑀𝑡 , with 𝑓 a probability density function on (0,∞) .

Proposition 1. Along a BGP,

¤𝐾𝑡
𝐾𝑡

= 𝜂 ; 𝑔𝑄 =
𝜃

𝛼
𝜂 and 𝑔 ≡ ¤𝑐𝑡

𝑐𝑡
=

𝜂

𝜎 − 1︸︷︷︸
Variety

+ 𝜃

𝛼
𝜂︸︷︷︸

Quality

Proof. Using the KFE, a time invariant 𝑓𝑝 (𝑞) requires 𝐾𝜃𝑡 𝑄
−𝛼
𝑡

to be constant. But 𝑄
𝑡
grows at

constant rate 𝑔𝑄 , so 𝐾𝑡 grows at constant rate. That this constant growth rate is 𝜂 is obtained
from (12) combined with stationarity of labor allocations. It follows that 𝑄

𝑡
grows at rate 𝜃

𝛼
𝜂. The

expression for 𝑔 is then obtained from (10). □

Assumption 2. Finite lifetime utility and firm value require

𝜌 > 𝜂 + (1 − 𝛾)𝑔 ; (𝜎 − 1)
(
𝛽 − 𝑔𝑄

)
+ 1

2
(𝜎 − 1)2𝜈2 < 𝜂 and 𝛼 > 𝜎 − 1 .

1Using the definition of a product’s value from (6), 𝑉 (𝑞, 𝑡) ≡ 𝑉𝑡
(
𝑄
𝑡
𝑒𝑞

)
.
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To build intuition for the rate of quality growth 𝑔𝑄 , notice first that it does not depend on the
drift 𝛽 and volatility 𝜈. While these forces affect growth in sales for an incumbent product, they do
not contribute to aggregate growth along a path with a stationary distribution of relative quality.
Intuitively, the reason is that the quality gains experienced by a product are “lost” once it exits.

It is also noteworthy that, when 𝜃 = 0, there is no quality growth along the BGP. This case
corresponds to a time-invariant entry distribution. Along the BGP, the (un-normalized) distribution
of incumbent quality is then itself time-invariant, as in the stationary equilibrium of Hopenhayn
(1992) and Melitz (2003). The sole driver of aggregate productivity growth in this case is the
expanding measure of products consumed.

This underscores that the driver of quality growth in this economy is the improvement in
the entry distribution. When 𝜃 > 0, this improvement happens as a result of the endogenous
accumulation of knowledge (blueprints). In this case, as shown in Figure 1, exponential growth in
the stock of blueprints 𝐾𝑡 at rate 𝜂 shifts the entry distribution to the right at rate 𝜃

𝛼
𝜂. The resulting

quality growth rate is increasing in 𝜂 (knowledge accumulated faster) and 𝜃 (stronger spillovers),
but decreasing in 𝛼. Intuitively, when the tail of the entry distribution is thinner (higher 𝛼), good
ideas are harder to find, so that a given spillover strength 𝜃 shifts out the average draw less.

Sustained quality growth thus requires a growing population and positive spillovers. The first
is common in semi-endogenous growth models (Jones, 2022): if new ideas drive growth and
individuals come up with ideas, then the economy’s growth rate is tied to the rate of population
growth. That 𝜃 > 0 is necessary to sustain quality growth in this model stands in contrast to
Kortum (1997). Key to understanding the difference is that, while these two semi-endogenous
growth models share the same entry distribution, the mass of products in Kortum (1997) is fixed as
new products perfectly substitute for older ones. As a result, what matters for the rate of quality
growth in that setup is the maximum draw. Even if the distribution is time invariant, Kortum (1997)
shows that exponential growth in the number of draws (due to population growth) from a Pareto
distribution leads to exponential growth in the maximum draw. In contrast, what matters for the
rate of quality growth in my setting is the average draw from the entry distribution, and for that to
grow over time, the entry distribution has to shift out, which requires 𝜃 > 0.

While indicative about the presence of spillovers (𝜃 > 0), quality growth alone is not informative
about their magnitude. Rapid quality growth can reflect strong spillovers (high 𝜃) and/or a
thick-tailed entry distribution (low 𝛼). In addition to this identification challenge, quality growth is
notoriously challenging to measure, see for example Bils and Klenow (2001), Bils (2009), Aghion,
Bergeaud, Boppart, Klenow and Li (2019), and Atalay, Hortaçsu, Kimmel and Syverson (2025).
This is why, to quantify spillovers, I leverage the model’s product and firm dynamics. I now turn to
characterizing product dynamics along the BGP, and move to firm dynamics in Section 3.

Assumption 3. The parameters are such that, along the BGP,

𝑄
𝑡
≥ 𝐾𝜃/𝛼𝑡 .
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In words, this corresponds to the case where, the lower bound of the distribution entrants draw
from (𝐾𝜃/𝛼𝑡 ) is no greater than the threshold to supply a product (𝑄

𝑡
). Proposition 1 guarantees that

these grow at the same rate, and in Appendix B.1.3, I show that this ordering obtains when the
present discounted value of the effective fixed cost of operation is not too small relative to the entry
cost (Equation 22 in Appendix B.1.3 provides the condition on parameters).

Proposition 2. The stationary distribution of product log-relative quality is

𝑓𝑝 (𝑞) =
𝛼𝜁

𝜁 − 𝛼

(
𝑒−𝛼𝑞 − 𝑒−𝜁𝑞

)
where 𝜁 ≡

𝑔𝑄 − 𝛽 +
√︁
(𝑔𝑄 − 𝛽)2 + 2𝜂𝜈2
𝜈2

,

and the stationary product entry and exit rates are respectively

𝐸𝑡

𝑀𝑡

= 𝜂 + 𝜈
2

2
𝛼𝜁 ;

𝐷𝑡

𝑀𝑡

=
𝜈2

2
𝛼𝜁 .

Proof. Follows from solving the KFE along the BGP. Details in Appendix B.1.1 □

It follows that the incumbent quality distribution (in levels) has a Pareto tail with index min {𝛼, 𝜁}.
While 𝛼 is inherited from the entry distribution, 𝜁 is the Luttmer (2007) tail that arises endogenously
as a result of the geometric Brownian motion. This Pareto tail reflects the positive selection of
products that have accumulated favorable Brownian shocks over time (as those that accumulate
negative shocks get shut down). As such, it is unsurprising that higher volatility 𝜈 makes this tail
thicker (smaller 𝜁). In contrast, faster population growth (𝜂) or higher growth in entrant’s quality
relative to incumbents (𝑔𝑄 − 𝛽) make this endogenous tail thinner (larger 𝜁). Intuitively, both of
these forces increase the share of products that are young and which haven’t had enough time to
accumulate as many favorable Brownian shocks.

A distinctive feature of the model—in particular relative to the model with endogenous growth
in Luttmer (2007)—is that stationary product entry and exit rates do not depend on the cost of
entry (𝜀, 𝜗, and 𝛿). The reason is that, along the BGP, the cost of entry has a proportional effect
on the flow of entry 𝐸𝑡 and the measure of products supplied 𝑀𝑡 , leaving the stationary entry rate
unaffected. Put differently, “cheaper” entry makes innovation more appealing at all times, equally
raising the flow of entry and the measure of products, as the latter reflects cumulative past entry.
This is an attractive feature of the model as it makes my quantification robust to unmodeled forces
that simply affect the cost of entry.

Proposition 3. Along the BGP, the value of a product with log-relative quality 𝑞 is

𝑉 (𝑞, 𝑡) = 𝑤𝑡V(𝑞) where V(𝑞) ≡ F −𝑂
𝑟 − 𝑔

[
𝜉

𝜉 + 𝜎 − 1𝑒
(𝜎−1)𝑞 + 𝜎 − 1

𝜉 + 𝜎 − 1𝑒
−𝜉𝑞 − 1

]
𝜉 ≡

𝛽 − 𝑔𝑄 +
√︁
(𝛽 − 𝑔𝑄)2 + 2𝜈2(𝑟 − 𝑔)

𝜈2
,
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and average production labor per product is

𝐿𝑡

𝑀𝑡

= (F −𝑂) 𝛼𝜁 (𝜎 − 1)
(𝛼 − (𝜎 − 1)) (𝜁 − (𝜎 − 1))

𝜉

𝜉 + 𝜎 − 1
𝑟 − [𝑔 + (𝜎 − 1) (𝛽 − 𝑔𝑄) + 𝜈2

2 (𝜎 − 1)
2]

𝑟 − 𝑔

Proof. Follows from solving the HJB along the BGP. Details in Appendix B.1.2 □

With both 𝐿𝑡/𝑀𝑡 and 𝐼𝑡 pinned down, one more equation is needed to fully characterize the
stationary labor allocations, and it will follow from the free entry condition:

𝜀𝐾𝜃𝑡 𝑄
−𝛼
𝑡

∫ ∞
0
𝑉 (𝑞, 𝑡)𝛼𝑒−𝛼𝑞𝑑𝑞 = 𝑤𝑡

𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3
=⇒ 𝜀𝐾𝜃𝑡 𝑄

−𝛼
𝑡

∫ ∞
0
V(𝑞)𝛼𝑒−𝛼𝑞𝑑𝑞 = 1 . (14)

Intuitively, 𝜀 is the arrival rate of a new blueprint, 𝐾𝜃𝑡 𝑄−𝛼𝑡 is the probability that a new blueprint
leads to entry (quality draw is above threshold), and the integral gives the expected value of a new
product conditional on entry. As I show in Appendix B.1.3, this can be rewritten as

𝑆𝑡

𝑀𝑡

+ 𝐼

1 − 𝛿 =

(
𝜂 + 𝜈

2

2
𝛼𝜁

) ∫ ∞
0
V(𝑞)𝛼𝑒−𝛼𝑞𝑑𝑞 ;

which makes clear that the free entry conditions pins down the level of innovation along the BGP.

2.5 Efficiency

Having characterized the stationary allocations arising in equilibrium, I now turn to assessing their
efficiency. To do so, I solve for the first best.

I delegate the detailed setup and solution of the planner’s problem to Appendix B.2, and instead
focus here on comparing the resulting BGP to the equilibrium BGP. Given the semi-endogenous
nature of the model, the growth rates are as in Proposition 1 and the stationary distribution of
product qualities as in Proposition 2. Contrasting the conditions pinning down stationary labor
allocations in the first best (FB) versus equilibrium (DE) reveals the following:

Proposition 4. If 𝜃 = 0, the equilibrium BGP is efficient. In contrast, if 𝜃 > 0, then the equilibrium
BGP features too little innovation with(
𝐿𝑡

𝑀𝑡

)DE
=

(
𝐿𝑡

𝑀𝑡

)FB
and 𝐼DE = 𝐼FB but 𝑆DE

𝑡 < 𝑆FB
𝑡 , 𝑀DE

𝑡 > 𝑀FB
𝑡 , and 𝐿DE

𝑡 > 𝐿FB
𝑡 .
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The divergence is due to differing free entry conditions, which I reproduce below:

Equilibrium: 𝑤𝑡 =

(
1 + 𝜃𝜂

𝜌 + (𝛾 − 1)𝑔

)
𝜀𝐾𝜃𝑡 𝑄

−𝛼
𝑡

∫ ∞
0
𝑤𝑡V(𝑞)𝛼𝑒−𝛼𝑞𝑑𝑞

First Best: 𝜔𝑡 =

(
1 + 𝜃𝜂

𝜌 + (𝛾 − 1)𝑔

)
𝜀𝐾𝜃𝑡 𝑄

−𝛼
𝑡

∫ ∞
0
𝜔𝑡V(𝑞)𝛼𝑒−𝛼𝑞𝑑𝑞

Here 𝜔𝑡 is the Lagrange multiplier on the labor resource constraint in the planner’s problem,
whereas 𝑤𝑡 is the wage; both of which cancel. So the only difference is the term upfront on the right
hand side. Given 𝜂 > 0, these conditions coincide if and only 𝜃 = 0. Otherwise, when 𝜃 > 0, for a
given 𝐾𝑡 and 𝑄

𝑡
, the planner’s expected value from entry is higher. This is because the planner

internalizes the positive externality arising from knowledge spillovers. This additional term has
a Pigouvian interpretation. The externality consists of any individual failing to internalize that
their innovation raises the aggregate stock of knowledge 𝐾𝑡 . Along the BGP, this stock grows at
rate 𝜂, which improves the distribution future entrants draw from at rate 𝜃𝜂. The denominator
corresponds to taking the present discounted value (it is simply 𝑟 − 𝑔), as the benefits of a higher
stock of knowledge last forever. As a result of this externality, there is underprovision of innovation
in equilibrium.2

Contrasting these free entry conditions sheds light on how the planner can decentralize the
first best. The policy instrument needs to incentivize the marginal individual to be a startup
entrepreneur rather than working for an incumbent firm. One such policy is a profit subsidy at rate
𝜃𝜂

𝑟−𝑔 , which aligns the social and individual valuation of entry. Since labor is inelastically supplied,
an isomorphic tool is a tax on labor income.

In practice, governments subside innovation through a wide array of policies (Bloom, Van Reenen
and Williams, 2019). With that in mind, to interpret the magnitude of spillovers I estimate, I report
the corresponding gap between the social and private rates of return to R&D along the equilibrium
BGP. The no-arbitrage condition implies that the private rate of return is 𝑟. In contrast, the social
rate of return is higher and given by:

Social Rate of Return to R&D along Equilibrium BGP = 𝑟 + 𝜃𝜂

That the gap should be 𝜃𝜂 can be intuitively seen from comparing the above free entry conditions
(after converting from present discount value units to annual rates of return). The formal derivation
is in Appendix B.3. I follow Jones and Williams (1998) and define the social rate of return to
R&D as the rate of return on a variation around the BGP. The variation consists of sacrificing
some consumption at 𝑡 in order to do more R&D, and then eating the proceeds at 𝑡 + 𝑑𝑡 by doing
sufficiently less R&D to be back to the initial BGP by 𝑡 + 2𝑑𝑡. The rate of return on this variation,
in terms of higher consumption at 𝑡 + 𝑑𝑡, is precisely the social rate of return to R&D.

2Along an interior BGP, this underprovision shows up entirely along the entry of new firm margin, and the
per-product incumbent innovation is efficient. I discuss the underlying intuition in detail at end of Appendix B.2.
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That the only source of inefficiency is knowledge spillovers stands in contrast to quality ladder
models of Schumpeterian growth (Aghion and Howitt, 1992; Grossman and Helpman, 1991).
While my model does feature the negative business stealing externality, it also features a positive
consumer surplus externality due to love of variety, as new products are imperfect substitutes for
older ones. Given the CES aggregator, the two externalities exactly offset, as in Melitz (2003).
While this is a special property of the CES aggregator (Dhingra and Morrow, 2019), it is convenient
for the purposes of this paper as the goal is to isolate and quantify knowledge spillovers.

2.6 From product dynamics to knowledge spillovers

My approach to quantifying spillovers is to estimate the wedge 𝜃𝜂. I now shed light on why, through
the lens of the model, product dynamics are informative about this wedge. To do so, note that the
product exit rate from Proposition 2 can be equivalently rewritten as:

𝐷𝑡

𝑀𝑡

=
1

2
(𝜃𝜂 − 𝛼𝛽) + 1

2

√︃
(𝜃𝜂 − 𝛼𝛽)2 + 2𝜂𝛼2𝜈2 . (15)

Special case with no drift or volatility (𝛽 = 𝜈 = 0). In this case, after being developed, a
product’s quality is constant. Over time, if 𝜃 > 0 this incumbent competes with an increasingly
higher quality pool of products. This gradually erodes the incumbent product’s market share and
eventually drives it out of business once its relative quality falls below the threshold needed to cover
overhead costs. The resulting product exit and entry rates are:

Product Exit Rate

�����
𝛽=𝜈=0

= 𝜃𝜂 = gap between social and private rates of return

Product Entry Rate

�����
𝛽=𝜈=0

= (1 + 𝜃)𝜂

A higher wedge 𝜃𝜂 raises both the entry and exit rates. Intuitively, when spillovers are stronger
(higher 𝜃) or when knowledge is accumulated at a faster pace (higher 𝜂), entrants’ quality improves
more quickly so that incumbents lose market share at a faster pace and exit at higher rate.

With this intuition in mind, it might seem puzzling that a thicker tail (lower 𝛼) does not increase
the exit rate, since it similarly increases the rate at which entrant’s quality grows. To reconcile these
two observations, it is important to recognize that the exit rate is the product of two terms: the
growth rate of quality and the density of the incumbent distribution near (in this special case, at)
the lower bound. As shown above, the former is 𝑔𝑄 = 𝜃

𝛼
𝜂, and with 𝛽 = 𝜈 = 0, the latter is simply

𝛼, so that 𝛼 cancels out. The intuition is that the incumbent distribution inherits the shape of the
entry distribution, so when the entry distribution has a thicker tail, the faster increase in quality is
exactly offset by a lower density of incumbents near the exit threshold.
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In this special case with no Brownian motion, one can recover the wedge 𝜃𝜂 from the stationary
product exit rate alone. The use of rates rather than levels is key for identification. The reason is
that the measure of products (denominator in this rate) reflects cumulative past entry. So, while a
host of factors in the model make entry more appealing, they raise the flow of entry and exit as well
as the measure of products proportionally, leaving the entry and exit rates unchanged.

General case with volatility and drift (𝛽 ≠ 0 and 𝜈 > 0). The reason I entertain volatility in
the model is precisely to introduce product exit not due to spillovers. From Equation 15, higher
volatility increases the product exit rate; this effect is stronger when population growth is faster
(larger 𝜂) and when the entry distribution is thinner (larger 𝛼)—as both of these increase the density
of products near the exit threshold (Proposition 2). With the product exit rate “contaminated” by
exit due to volatility, I leverage the profile of product exit by age for identification.

Proposition 5. The hazard rate of a product exiting at age 𝑎 is

𝑑𝑝 (𝑎) =
ℓ(𝑎)

1 −
∫ 𝑎
0
ℓ(𝜏)𝑑𝜏

,

where ℓ(𝑎) is the density of a product’s lifespan (i.e. age at exit) and is given by:

ℓ(𝑎) = exp

(
𝑎

(
(𝛼𝜈)2

2
− 𝛼

(
𝑔𝑄 − 𝛽

) )) (
𝛼𝜈
√
𝑎
𝜙 (𝑧𝑎) −

(
(𝛼𝜈)2 − 𝛼

(
𝑔𝑄 − 𝛽

) )
Φ (−𝑧𝑎)

)
with 𝑧𝑎 ≡

√
𝑎

𝛼𝜈

(
(𝛼𝜈)2 − 𝛼

(
𝑔𝑄 − 𝛽

) )
, 𝜙(.) and Φ(.) standard normal PDF and CDF.

Proof. See Appendix B.4 for proof of Proposition 5 and Proposition 6. □

This shows that 𝛼
(
𝑔𝑄 − 𝛽

)
= 𝜃𝜂 − 𝛼𝛽 and 𝛼𝜈 are sufficient statistics for the profile of product

exit rate by age.3 Intuitively, the former captures the component of the product exit rate resulting
from the deterministic downward drift toward the exit threshold, while the latter is a measure of
relative volatility and governs the extent of product exit due to idiosyncratic shocks. It is the first of
these two statistics that is informative about the wedge 𝜃𝜂. By targeting the profile of product exit
by age, this component of the product exit rate can be separately identified from exit due to shocks.
The reason is that a higher 𝜃𝜂 − 𝛼𝛽 increases product exit rate at all ages, whereas a higher 𝛼𝜈
increases the product exit rate at young ages but decreases it at older ones. This non-monotonic
effect of volatility on the exit rate by age is a consequence of selection: when volatility is higher,
products that survive to old age are even more positively selected.

The challenge this approach runs into is that product data are not widely available, so that my
ultimate quantification exercise has to rely on firm data. This requires characterizing the model’s

3Such dimension reductions are common in duration models where the state evolves as a Brownian motion with
drift—see Alvarez, Borovičková and Shimer (2023) for another example.
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firm dynamics, which I now turn to.

3 Model’s Firm Dynamics

Through the lens of the model in Section 2, dynamics of product exit are informative about the
magnitude of knowledge spillovers. The challenge, however, is that comprehensive datasets track
the exit of firms rather than products. This section provides the necessary bridge, formalizing how,
within the model, underlying product dynamics aggregate to observable firm dynamics.

3.1 A firm’s life cycle

Because I did not track firms when characterizing the equilibrium in Section 2, it is helpful to start
with a recap of a firm’s life cycle along the balanced growth path. I continue to use a product’s
log-relative quality 𝑞𝑝𝑡 as its state variable.

A new firm 𝑓 starts with a single product 𝑝. Since the logarithm of a Pareto-distributed
random variable is exponentially distributed, the log-relative quality of the product 𝑞𝑝𝑡 is drawn
from Exp(𝛼). Thereafter, 𝑞𝑝𝑡 evolves according to Equation 8 until it hits zero, at which point
production of 𝑝 is irreversibly shut down. While still produced, 𝑝 has 𝐼 R&D workers associated
with it, as in Equation 11. This R&D generates a new blueprint at Poisson rate 𝜄 (𝐼). This new
blueprint leads to product entry when the quality draw is above the threshold𝑄

𝑡
, so with probability

𝐹
𝐸

𝑡 (𝑄𝑡) = 𝐾
𝜃
𝑡 𝑄
−𝛼
𝑡

, which is constant along the BGP (by Proposition 1). As a result, while still
produced, 𝑝 “gives birth” to a new product at rate 𝑥:

𝑥 = 𝜄 (𝐼) 𝐹𝐸𝑡
(
𝑄
𝑡

)
=

𝜀

1 − 𝛿

(
𝜗

𝜀

) 1
𝛿

𝐾𝜃𝑡 𝑄
−𝛼
𝑡

=
1

1 − 𝛿

(
𝜗

𝜀

) 1
𝛿 (𝑟 − 𝑔) (𝛼 + 𝜉) (𝛼 − (𝜎 − 1))

(F −𝑂) (𝜎 − 1) .

The log-relative quality of this new product is again drawn from Exp(𝛼), then evolves according to
Equation 8 with independent Brownian increments across products; while active, this product in
turn gives birth to a new one at Poisson rate 𝑥.

Accordingly, the number of products firm 𝑓 produces at ages 𝑎 ≥ 0,
{
𝑛 𝑓 (𝑎)

}
𝑎≥0, is a branching

process. At age 0, 𝑓 starts with a single product, so 𝑛 𝑓 (0) = 1. Firm 𝑓 exits once all its products
have become obsolete, so its age at exit, or lifespan, is the smallest 𝑎 such that 𝑛 𝑓 (𝑎) = 0:

𝑎 𝑓 = inf
{
𝑎 ≥ 0 | 𝑛 𝑓 (𝑎) = 0

}
.

This is a random variable for two reasons: product births arrive as a Poisson process, and each
product’s lifespan is itself random. Denoting by Γ the cumulative distribution function (CDF) of
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𝑎 𝑓 , the hazard rate of firm 𝑓 exiting at an age 𝑎 is:

𝑑 𝑓 (𝑎) =
Γ′(𝑎)

1 − Γ(𝑎) .

Assumption 4. To guarantee that products and firms exit in finite time almost surely, I assume:

𝛽 ≤ 𝑔𝑄 and 0 ≤ 𝑥 ≤ 𝛼
(
𝑔𝑄 − 𝛽

)
.

Proposition 6. The CDF of a firm’s lifespan satisfies Γ(0) = 0 and, for all 𝑎 > 0,

Γ(𝑎) =
∫ 𝑎

0
ℓ(𝜏) exp

(∫ 𝜏

0
𝑥 [Γ(𝑎 − 𝑠) − 1] 𝑑𝑠

)
𝑑𝜏 ,

where ℓ(.) is the density of a product’s lifespan, given in Proposition 5.

In conjunction with Proposition 5, this highlights that, 𝑥, 𝜃𝜂 − 𝛼𝛽 and 𝛼𝜈 are sufficient statistics
for the profile of firm exit by age. Intuitively, 𝑥 controls the rate at which an incumbent firms adds a
product to its portfolio, while 𝛼

(
𝑔𝑄 − 𝛽

)
and 𝛼𝜈 the rates at which it loses a product (as discussed

above). Note that, computationally, solving for Γ only requires a single forward iteration on a fine
age grid, as Γ(𝑎) only depends on {Γ(𝜏) : 𝜏 < 𝑎} and Γ(0) = 0.

3.2 Evolution of the size distribution of firms

Having shed light on the life cycle of a single firm, I now turn to characterizing the evolution of the
distribution of firms along the equilibrium BGP. Unlike Klette and Kortum (2004) and Luttmer
(2011), the evolution of a firm’s number of products is non-Markovian here. A firm with 𝑛 products
becomes a firm with 𝑛 − 1 products when it endogenously chooses to shutdown production of one
of its products. Since this happens when a product’s log-relative quality hits zero, I need to keep
track of a firm’s portfolio of products. In this vein, define:

𝜇𝑛𝑡 (𝑞1, . . . , 𝑞𝑛) ≡ measure at 𝑡 of 𝑛-product firms with portfolio 𝑞1, . . . , 𝑞𝑛 .

Since 𝜇𝑛𝑡 is the measure of 𝑛-product firms and a product exits once its relative quality hits zero,

∀𝑖 ∈ {1, . . . , 𝑛}, 𝑞𝑖 = 0 =⇒ 𝜇𝑛𝑡 (𝑞1, . . . , 𝑞𝑛) = 0 .

Put differently, the support of 𝜇𝑛𝑡 is the positive orthant (0,∞)𝑛, and 𝜇𝑛𝑡 vanishes on the boundary
of this support. To avoid cumbersome notation, I will denote by q the vector (𝑞1, . . . , 𝑞𝑛), and its
dimension is to be inferred from the function it is an argument for. It follows that the total measure
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of products can be written as:

𝑀𝑡 =
∞∑︁
𝑛=1

𝑛

∫
q∈(0,∞)𝑛

𝜇𝑛𝑡 (q) 𝑑q︸                    ︷︷                    ︸
Measure of 𝑛-product firms

. (16)

The evolution of the firm size distribution is then characterized by a system of coupled partial
differential equations. Starting with single product firms, for 𝑞 > 0:

¤𝜇1𝑡 (𝑞) =
(
𝑔𝑄 − 𝛽

)
𝜇′1𝑡 (𝑞) +

𝜈2

2
𝜇′′1𝑡 (𝑞) Drift and Diffusion

− 𝑥 𝜇1𝑡 (𝑞) Single product firm adds a product

+ 𝐸 𝑓
𝑡 𝛼 𝑒

−𝛼𝑞 Entry of new firm

+ 𝜈
2

2
𝜕1𝜇2𝑡 (0, 𝑞) +

𝜈2

2
𝜕2𝜇2𝑡 (𝑞, 0) 2-product firm shuts down a product

The drift and diffusion terms on the first line echo those from from the product-level KFE in
Equation 9. The second line captures that, while still produced (𝑞 > 0), an incumbent product gives
birth to a new one at constant Poisson rate 𝑥. This shows up as an outflow because in this case the
single product firm becomes a 2-product firm.

The last two lines in the law of motion correspond to inflows. The first source is the entry
of new firms, with the corresponding inflow at 𝑞 given by the total flow of entering firms 𝐸 𝑓

𝑡

multiplied by the density of draws at that relative quality. The second inflow source is a 2-product
firm shutting down the production of either of its products. Since a product’s log-relative quality
evolves following Equation 8 and exit is the absorbing boundary at 0, the instantaneous flow of
2-product firms who shut down production of their first product and whose second product has
quality 𝑞 is given by 𝜈2

2 𝜕1𝜇2𝑡 (0, 𝑞). To clarify the notation, the second term is the partial derivative
of 𝜇2𝑡 with respect to its first argument, evaluated at (0, 𝑞). Similarly, there is inflow of 2-product
firms who shut down production of their second product and whose first product has quality 𝑞
(second summand in last line of the law of motion).4

The law of motion for 𝜇𝑛𝑡 for 𝑛 > 1 has a similar structure. The key difference is that the
sources of inflow now are (𝑛 − 1) and (𝑛 + 1)-product firms. As such, for q ∈ (0,∞)𝑛, denote by
q\𝑖 ∈ (0,∞)𝑛−1 the vector q with its 𝑖th entry removed and by q𝑖←0 the (𝑛 + 1) dimensional vector

4Throughout, partial derivatives evaluated at a point on a hyperplane delimiting the positive orthant are taken as
limits approaching the hyperplane from inside the support. For 𝑛 = 1, this corresponds to the right derivative at 0.
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obtained by inserting a 0 into q at the 𝑖th index. It follows that, for q ∈ (0,∞)𝑛,

¤𝜇𝑛𝑡 (q) = (𝑔𝑄 − 𝛽)
𝑛∑︁
𝑖=1

𝜕𝑖𝜇𝑛𝑡 (q) +
𝜈2

2

𝑛∑︁
𝑖=1

𝜕2𝑖 𝜇𝑛𝑡 (q) Drift and Diffusion

− 𝑛 𝑥 𝜇𝑛𝑡 (q) 𝑛-product firm adds product

+ (𝑛 − 1) 𝑥 1

𝑛

𝑛∑︁
𝑖=1

𝛼𝑒−𝛼𝑞𝑖𝜇(𝑛−1)𝑡
(
q\𝑖

)
(𝑛 − 1)-product firm adds a product

+ 𝜈2

2

𝑛+1∑︁
𝑖=1

𝜕𝑖𝜇(𝑛+1)𝑡
(
q𝑖←0

)
(𝑛 + 1)-product firm loses a product

The diffusion term on the first line leverages the independence of Brownian increments across
products within a firm. The outflow term on the second line reflects that, since each product gives
birth to a new one at rate 𝑥, a 𝑛-product firms expands to 𝑛 + 1 products at Poisson rate 𝑛𝑥.

The inflow from 𝑛− 1 to 𝑛 on the third line merits some clarification. A firm with 𝑛− 1 products
expands to a 𝑛-product firm at Poisson rate (𝑛 − 1)𝑥. What shows up in the law of motion is the
inflow at a given q, and any of the 𝑛 products could be the new one.5 Suppose for a second that the
new product is 𝑖 = 1. The measure of (𝑛 − 1)-product firms with product qualities (𝑞2, . . . , 𝑞𝑛) is
precisely 𝜇(𝑛−1)𝑡 (q\1). Such a firm adds a product to its portfolio at rate (𝑛 − 1)𝑥, and if successful,
the relative quality of this new product is independent of the firm’s portfolio and drawn from the
density 𝛼𝑒−𝛼𝑞1 . The term on the third line of the law of motion is simply obtained by averaging
such contributions over 𝑖 = 1, . . . , 𝑛 as each of these is equally likely to be the new product.

Finally, a firm with 𝑛 + 1 products becomes a 𝑛-product firm when it shut downs production
of one of its products. The ultimate line of the law of motion is the resulting inflow at a given q,
with its structure mirroring that of the 𝑛 = 1 case that I discussed above. For the sake of clarity,
𝜕𝑖𝜇(𝑛+1)𝑡

(
q𝑖←0

)
is the partial derivatives of 𝜇(𝑛+1)𝑡 with respect to its 𝑖th argument evaluated at

(𝑞1, . . . , 𝑞𝑖−1, 0, 𝑞𝑖, . . . , 𝑞𝑛).

3.3 Defining a stationary firm size distribution

Along the BGP, the measure of products 𝑀𝑡 grows at rate 𝜂. For the distribution of products per
firm to be stationary, the number of firms needs to grow at rate 𝜂 as well. So to define a stationary
firm size distribution, I start by introducing the following normalized variables. Let Ψ𝑛𝑡 be the
share of products at 𝑡 held by firms with 𝑛 products, so that

Ψ𝑛𝑡 =
1

𝑀𝑡

𝑛

∫
q∈(0,∞)𝑛

𝜇𝑛𝑡 (q) 𝑑q and
∞∑︁
𝑛=1

Ψ𝑛𝑡 = 1 .

5The firm’s state variable is its set of products, as reflected by the PDE system satisfying permutation symmetry.
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Since the measure of 𝑛-product firms grows at rate 𝜂 along the BGP, also define:

𝑓𝑛𝑡 (q) =
𝑛 𝜇𝑛𝑡 (q)
Ψ𝑛𝑡 𝑀𝑡

.

Note that 𝑓𝑛𝑡 (q) is the probability density function on (0,∞)𝑛 of product qualities among 𝑛-product
firms. A stationary firm size distribution amounts to Ψ𝑛 and 𝑓𝑛 (q) being time invariant:

∀𝑡,Ψ𝑛𝑡 = Ψ𝑛 and 𝑓𝑛𝑡 (q) = 𝑓𝑛 (q) .

Plugging these back into the laws of motion outlined above yields the following definition.

Definition 3. A stationary firm size distribution consists of

• a sequence of non-negative numbers {Ψ𝑛}𝑛≥1 with ∑∞
𝑛=1 Ψ𝑛 = 1,

• a sequence of functions { 𝑓𝑛}𝑛≥1, with 𝑓𝑛 a probability density function on (0,∞)𝑛,

such that {Ψ𝑛} and { 𝑓𝑛} jointly satisfy the following system of coupled PDEs:

(𝜂+𝑥) 𝑓1(𝑞) =
(
𝑔𝑄 − 𝛽

)
𝑓 ′1(𝑞)+

𝜈2

2
𝑓 ′′1 (𝑞)+

𝜂 + 𝜈2

2 𝛼𝜁 − 𝑥
Ψ1

𝛼𝑒−𝛼𝑞+𝜈
2

2

Ψ2

2 Ψ1
[𝜕1 𝑓2(0, 𝑞) + 𝜕2 𝑓2(𝑞, 0)] ;

with the boundary condition 𝑓1(0) = 0; and for 𝑛 > 1,(𝜂
𝑛
+ 𝑥

)
𝑓𝑛 (q) =

1

𝑛

𝑛∑︁
𝑖=1

( (
𝑔𝑄 − 𝛽

)
𝜕𝑖 𝑓𝑛 (q) +

𝜈2

2
𝜕2𝑖 𝑓𝑛 (q)

)
+ 𝑥 Ψ𝑛−1

Ψ𝑛

1

𝑛

𝑛∑︁
𝑖=1

𝛼𝑒−𝛼𝑞𝑖 𝑓𝑛−1
(
q\𝑖

)
+ 𝜈

2

2

Ψ𝑛+1
Ψ𝑛

1

𝑛 + 1
𝑛+1∑︁
𝑖=1

𝜕𝑖 𝑓𝑛+1
(
q𝑖→0

)
with the boundary condition: ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑞𝑖 = 0 =⇒ 𝑓𝑛 (q) = 0.

These coupled partial differential equations are the analogue of the difference equations
characterizing the stationary firm size distribution in Klette and Kortum (2004) and Luttmer (2011).
They are PDEs instead of difference equations because the non-Markovian evolution of a firm’s
number of products requires keeping track of product qualities. To make the parallel even clearer,
the following definition will prove helpful.

Definition 4. The average product exit rate among 𝑛-product firms is 𝜆𝑛, with:

𝜆1 =
𝜈2

2
𝑓 ′1(0) and for 𝑛 > 1, 𝜆𝑛 =

𝜈2

2

1

𝑛

𝑛∑︁
𝑖=1

∫
q∈(0,∞)𝑛−1

𝜕𝑖 𝑓𝑛

(
q𝑖→0

)
𝑑q .
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Proposition 7. Given a stationary firm size distribution {Ψ𝑛, 𝑓𝑛} and the corresponding {𝜆𝑛},{
𝜂Ψ1 = − (𝑥 + 𝜆1) Ψ1 + 𝜆2Ψ2 + 𝜂 + 𝜈2

2 𝛼𝜁 − 𝑥
𝜂

𝑛
Ψ𝑛 = − (𝑥 + 𝜆𝑛) Ψ𝑛 + 𝜆𝑛+1Ψ𝑛+1 + 𝑥Ψ𝑛−1 for 𝑛 > 1

Proof. The 𝑛th recurrence relation follows from integrating both sides of the 𝑛th PDE over (0,∞)𝑛
then applying the divergence theorem in R𝑛. Details in Appendix B.7 □

The recurrence relation in Proposition 7 is a balance condition similar to the one in Luttmer
(2011). The difference is that, in his setup, the product exit rate 𝜆 does not depend on 𝑛, as product
exit is a Poisson process. In contrast, here, the average product exit rate among 𝑛-product firms
depends on the endogenous shape of 𝑓𝑛.

It is perhaps clearer to appreciate the balance interpretation when the recurrence is rewritten in
terms of Φ𝑛, the share of firms with 𝑛 products:

Φ𝑛 ≡
Ψ𝑛
𝑛

∞∑
𝑘=1

Ψ𝑘
𝑘

=⇒ −

Outflow︷              ︸︸              ︷
𝑛𝑥Φ𝑛︸︷︷︸
𝑛 → 𝑛+1

− 𝑛𝜆𝑛Φ𝑛︸ ︷︷ ︸
𝑛 → 𝑛−1

+

Inflow︷                                      ︸︸                                      ︷
(𝑛 − 1)𝑥Φ𝑛−1︸          ︷︷          ︸

𝑛−1 → 𝑛

+ (𝑛 + 1)𝜆𝑛+1Φ𝑛+1︸              ︷︷              ︸
𝑛+1 → 𝑛

−

Dilution︷︸︸︷
𝜂Φ𝑛 = 0

Outflows from 𝑛 correspond to a 𝑛-product firm adding or shutting down a product. The former
happens with Poisson arrival rate 𝑛𝑥. While the latter is not the result of a Poisson shock, the
total mass flowing out is 𝑛𝜆𝑛Φ𝑛 since 𝜆𝑛 is the average product exit rate among 𝑛-product firms.
Inflows from 𝑛 − 1 to 𝑛 correspond to a (𝑛 − 1)-product firm adding a product, which happens at
Poisson rate (𝑛 − 1)𝑥. Inflows from 𝑛 + 1 to 𝑛 correspond to (𝑛 + 1)-product firm shutting down
production of one of its products, since the average product exit rate among such firms is 𝜆𝑛+1, the
total mass flowing in is (𝑛 + 1)𝜆𝑛+1Φ𝑛+1. Finally, growth in the total measure of firms at rate 𝜂 (due
to population growth) dilutes these shares.

3.4 Solving for the stationary firm size distribution

To solve the system from Definition 3, I start with a special case that then informs the general
solution strategy.

Special case with no population growth (𝜂 = 0). Given the semi-endogenous nature of the
model, the BGP is now simply a stationary equilibrium. Assumption 2 requires 𝛽 < 0, and active
firm entry requires 𝑥 < −𝛼𝛽. One can guess and verify that a solution to the system is:

∀𝑛 𝑓𝑛 (q) =
𝑛∏
𝑖=1

𝑓𝑝 (𝑞𝑖) ; 𝜆𝑛 = 𝜆 ≡ −𝛼𝛽 > 𝑥 > 0 ; Ψ𝑛 =
𝜆 − 𝑥
𝑥

( 𝑥
𝜆

)𝑛
, (17)
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where 𝑓𝑝 (𝑞) is the unconditional density of product qualities derived in Proposition 2 (plugging
𝜂 = 𝑔𝑄 = 0 into the definition of 𝜁 ). In this case, conditioning on the number of products a firm has
does not alter the distribution of product qualities. As a result, the average product exit rate does
not vary with firm size. The resulting distribution of products per firm, given by Ψ𝑛, matches that
of Klette and Kortum (2004).6 When 𝜂 = 0, whether one models product exit as resulting from a
Poisson death shock or negative selection has no bearing on the stationary firm size distribution.

General case (𝜂 > 0). When 𝜂 > 0, the sequences in (17) no longer constitute a solution to the
system in Definition 3. The culprit is the 𝜂

𝑛
term on the left hand side of each PDE.

Two points are worth emphasizing to highlight the intuition behind this result. First, as a
consequence of volatility and positive selection into surviving, the distribution of quality among
incumbent products first order stochastically dominates that among new products. Second, when
𝜂 > 0, the size of firm cohorts grows over time. Taken together, since firms that just entered are
necessarily single product, it is unsurprising that the distribution of product quality among single
product firms looks different from the distribution of product quality among multiproduct firms.

My strategy to solve the general system is motivated by the fact that 𝜂
𝑛
, the term preventing the

sequences in (17) from being a solution, vanishes as 𝑛 grows large. Accordingly, I guess that for
some large 𝑛0,

∀𝑛 > 𝑛0, 𝑓𝑛 (q) =
𝑛∏
𝑖=1

𝑓𝑝 (𝑞𝑖) ; 𝜆𝑛 = 𝛼
(
𝑔𝑄 − 𝛽

)
;

Ψ𝑛+1
Ψ𝑛

=
𝑥

𝛼(𝑔𝑄 − 𝛽)
.

The next step then consists of solving for { 𝑓𝑛,Ψ𝑛, 𝜆𝑛}𝑛≤𝑛0 . While finite, this system suffers from a
severe curse of dimensionality as each 𝑓𝑛 is a pdf on (0,∞)𝑛.

To address this curse of dimensionality, note that 𝑓𝑛 is the joint density of 𝑛 random variables
that one expects to be independent. The reason is twofold: (i) the qualities of a firm’s current
products have no bearing on the quality of a new product it adds to its portfolio; (ii) the Brownian
increments are independent across products. In addition, the system inherently satisfies permutation
symmetry: a firm’s state variable is its set of products, so their indexing should be irrelevant. So,

𝑓𝑛 (q) =
𝑛∏
𝑖=1

𝜑𝑛 (𝑞 𝑗 ), with 𝜑𝑛 pdf on (0,∞) satisfying 𝜑𝑛 (0) = 0 . (18)

Just like in (17), each joint density 𝑓𝑛 is the product of 𝑛 evaluations of the same marginal density.
However, the difference is that now the marginal density potentially depends on the firm’s number of
products. So, for example, while for a 2-product firm the product with index 1 is not systematically
any different than the product with index 2, the typical product held by a 2-product firm is allowed
to systematically differ from the typical product of a single product firm.

6See equation (17) of Klette and Kortum (2004). Their 𝑛𝑀𝑛 maps to my Ψ𝑛 and their 𝜃 to 𝜆−𝑥
𝑥

here.
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This observation simplifies the stationary firm size distribution to sequences Ψ𝑛 and 𝜑𝑛 (𝑞)
satisfying a system of coupled ordinary differential equations (given in Appendix B.6). This gets rid
of the curse of dimensionality because each 𝜑𝑛 (𝑞) is a density on (0,∞). As I explain in Appendix
C, this allows me to solve for {Ψ𝑛, 𝜆𝑛, 𝜑𝑛 (𝑞)}𝑛≤𝑛0 using state of the art ODE solvers.

In addition to standard convergence metrics, the theory provides a transparent way of verifying
my solution. By the law of total probability, aggregating the conditional distributions should yield
back the unconditional distribution:

𝑓𝑝 (𝑞) =
∞∑︁
𝑛=1

Ψ𝑛𝜑𝑛 (𝑞) and
𝐷𝑡

𝑀𝑡

=
∞∑︁
𝑛=1

Ψ𝑛𝜆𝑛 .

Here 𝑓𝑝 (𝑞) is the unconditional distribution of product quality and 𝐷𝑡
𝑀𝑡

is the product exit rate, both
characterized in closed form in Proposition 2. Crucially, neither of these identities was used as part
of the solution strategy.

A payoff of characterizing the stationary firm size distribution is the ability to pin down the firm
exit rate, which is given by:

Firm Exit Rate = 𝜆1Φ1 = 𝜆1
Ψ1
∞∑
𝑛=1

Ψ𝑛
𝑛

.

Intuitively, given the continuous time setup of the model, exiting firms are necessarily single
product. Such firms exit at rate 𝜆1 and their share among the total number of firms is Φ1.

4 Empirical Evidence

My ultimate goal is to use the model to quantify knowledge spillovers. As the preceding sections
revealed, I infer spillovers from the gradual component of product exit due to downward drift toward
the exit threshold. Therefore, before applying this novel approach, I provide direct evidence from
the consumer packaged goods sector for the two features of product exit that my approach leverages:
that product exit features negative selection and unfolds gradually.

4.1 Data

Motivating and validating the model’s treatment of product exit requires product-level data. For
this purpose, I use the NielsenIQ retail scanner dataset, which provides high-frequency data at the
UPC (universal product code, or barcode) level. Its coverage spans consumer packaged goods such
as groceries, cosmetics, and cleaning supplies. Different UPCs are partitioned into 104 product
categories (groups), including coffee, vitamins, laundry supplies, and pet food.
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The analysis draws on data from 2006 to 2019, covering a balanced panel of 25,400 retail stores.
Each retailer provides NielsenIQ with weekly data on sales and prices at the UPC level. The results
below are obtained by aggregating these data across retailers to the yearly level. This yields 6
million UPC-year observations and 1.2 million unique UPCs. Using the GS1 database, I identify
which UPCs are manufactured by the same firm, resulting in a total of 40,600 firms in my sample.
The Data Appendix provides further details on my sample construction and data cleaning steps.

Table 2: Summary Statistics – NielsenIQ Retail Scanner Sample

Mean Median P75 P90 P95

Firm sales (thousands of $) 9,171 87 1,335 34,382 66,022

Firm’s market share 10% 8% 17% 23% 27%

Number of UPCs per firm 12 3 8 37 62

UPC sales (thousands of $) 502 14 181 1,026 2,377

UPC’s market share 1.2% 0.7% 1.3% 2.4% 3.5%

Notes: NielsenIQ Retail Scanner data with GS1 database used to identify the firm manufacturing a
UPC. Each statistic is based on annual data from 2006 to 2019, and computed first at the group-year
level, then aggregated to the yearly level weighting a group by its share of sales that year, and finally
averaged across the 14 years. So, first three rows correspond to firm-level statistics within a group.

To validate my model’s treatment of product exit, I want to compare UPCs within the same
group. Because reporting results for each of the 104 product groups would be impractical, I
instead compute different moments at the group–year level, then aggregate them to the yearly level
weighting a group by its share of sales that year, and finally average across years.

Table 3: UPC Entry and Exit Dynamics

Entry Rate Exit Rate
UPC Age At Exit (in years)

Mean Median

13.6% 12.3% 3.1 2.9

Notes: All statistics are group–year moments, sales-weighted to the year and averaged across years.
Last two columns based on exiting UPCs for which age is not left censored.

Table 2 provides summary statistics. Within a product group, the distribution of sales across
firms is highly skewed. Consistent with the findings of Hottman, Redding and Weinstein (2016),
this reflects a skewed distribution of the number of UPCs per firm, as well as sales per UPC.
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Table 3 points to substantial turnover at the UPC level: the annual UPC entry and exit rates are
13.6% and 12.3% respectively. Notice that the average age of an exiting UPC is lower than the one
that would prevail if the hazard rate of exit were flat (1/0.123 = 8.1).

4.2 Four facts corroborating the paper’s treatment of product exit

Fact 1: UPCs with more sales are less likely to exit

Figure 2: UPC Sales and Hazard Rate of Exit

50 60 70 80 90 100
UPC’s Percentile In Within-Group Distribution Of Sales

0%

2%

4%

6%

8%

10%

12%

UPC Annualized Exit Rate

Exit within 5 years
Exit within a year

Notes: Cattaneo, Crump, Farrell and Feng (2024) binscatter with 50 bins, corresponding to the 50th
through 99th percentile of the distribution of sales within a group in year 𝑡. “Exit within a year” refers
to year 𝑡 + 1 being the UPC’s last year of sales. “Exit within 5 years” refers to UPC’s last year of sales
being 𝑡 + 6 or earlier. Vertical bars are 95% pointwise confidence intervals. Underlying number of
UPC-year observations is 2.73M (so roughly 54,600 per bin).

The first way to provide empirical support for selection into exit at the UPC level is by looking
at how the exit rate varies with sales. Figure 2 shows the annualized hazard rate of UPC exit as a
function of a UPC’s percentile in the sales distribution for the corresponding group-year. I focus on
UPCs with above median sales (in a group-year) to minimize concerns about measurement error
(those with the less sales are sold at very few retailers and account for only 2% of sales).

Figure 2 clearly illustrates that, within a group, UPC exit declines with UPC sales. This is true
even when looking at the hazard rate of exiting within 5 years, and when zooming in on the right
tail of the sales distribution within a group.
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Table 4: UPC Sales and Hazard Rate of Exit

Exit𝑝𝑡

log(sales𝑝𝑡−1) -1.69 -1.56 -2.70 -2.60
(0.10) (0.11) (0.24) (0.24)

UPC age FE ✓ ✓
Group x Year FE ✓ ✓
Firm x Group x Year FE ✓ ✓
Observations 2.58M 2.58M 2.50M 2.50M

Notes: Each column reports results from the OLS regression of a dummy for UPC p’s exit at 𝑡 on p’s
log annual sales in year 𝑡 − 1. Sample consists of UPCs with above-median sales in a group-year.
Average of the dependent variable is 7.4%, and distributional moments from UPC sales reported in
Table 2. Standard error in parentheses, clustered at the group level. UPC age FE includes a separate
dummy for left censored UPCs.

Table 4 presents the corresponding regression results. Among products with above-median sales
in a group–year, a doubling of sales (≈ 0.693 log units) reduces the exit hazard by 1.17 percentage
points. Subsequent columns show that this negative relationship is robust to the inclusion of
UPC-age fixed effects and firm-group-year fixed effects. This pattern corroborates the UPC-level
evidence in Broda and Weinstein (2010), who find higher exit among smaller and younger UPCs
using the NielsenIQ Homescan panel. Showing the same relationship in retailer scanner data,
where exit reflects disappearance from store shelves rather than zero purchases by a household
sample, lends further credibility to this relationship.7 Bernard, Redding and Schott (2010) reach
similar conclusions at a coarser product definition (5-digit SIC codes in U.S. manufacturing).

Fact 2: UPC exit rate is lower among firms with more UPCs

Figure 3 displays another facet of selection into product exit. It shows a firm’s UPC exit rate as a
function of its number of products. The former is defined as the number of exiting UPCs divided
by the number of UPCs in the firm’s portfolio (averaged between last and current year). So this is
the empirical counterpart of the relationship between 𝜆𝑛 and 𝑛 in the model. The figure illustrates
that, across firms in a group-year, the hazard rate of UPC exit is lower for firms with more UPCs.
This pattern is clearly inconsistent with models where product exit is modeled as a Poisson process.
In Section 5, I show that my model can generate this fact as a consequence of selection. In contrast,
Figure E2 shows no clear tend between the UPC addition rate and the firm’s number of UPCs,
providing empirical support for the constant rate of product addition in my model.

7Consistent with entry and exit being measured with non-negligible error in the Homescan panel, the entry and exit
rates reported in Table 3 are substantially lower than those reported in Broda and Weinstein (2010).
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Figure 3: UPC Exit Rate Across Multiproduct Firms
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Notes: Cattaneo et al. (2024) binscatter with 10 bins, corresponding to the deciles of the distribution
of UPC count among multiproduct firms within a group in year 𝑡. Exiting UPCs are those for which
the current year is the last year of sales; rates are obtained through division by firm’s UPC count in
corresponding group, averaged between previous and current year. Vertical bars are 95% pointwise
confidence intervals. Horizontal line is inverse-weighted mean, with 95% confidence interval around
it. Underlying number of firm-year observations is 264,809. Single product firms are not shown
because they account for 42% of firms—among them, UPC exit rate is 16.6%.

Fact 3: Prior to exit, UPC’s sales decline gradually

Besides the granularity, another advantage of the NielsenIQ Retail Scanner dataset is its high
frequency, which allows me to track dynamics prior to exit. Specifically, I estimate:

log Sales𝑝𝑡 = 𝛾𝑝 +
24∑︁
𝑚=1

𝛽𝑚𝐷
𝑚
𝑝𝑡 + 𝛾𝑔𝑡 + 𝜀𝑝𝑡 ; (19)

where 𝑝 indexes a UPC, 𝑔 its group (product category), and 𝑡 a month, with 𝛾𝑝 a UPC fixed effect,
𝛾𝑔𝑡 a group-month fixed effect, and 𝐷𝑚

𝑝𝑡 a dummy variable equal to 1 𝑚 months prior to the UPC’s
exit. The path of exp (𝛽𝑚) then represents the evolution of sales in the two years leading up to exit.
Given selection concerns, I only include UPCs that were at least two years old when they exited.
Figure 4 plots the resulting path for exp (𝛽𝑚), normalizing to 1 sales two years prior to exit. The
figure reveals that, in the lead up to exit, a UPC experiences a gradual decline in sales. Figure E1
in the Appendix reveals that this gradual decline happens along the extensive margin (number of
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Figure 4: Evolution of UPC Sales prior to Exit
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Notes: Path of exp (𝛽𝑚) from Equation 19, normalized such that exp (𝛽24) = 1. Number of
observations in the underlying regression is 54M with 𝑅2 = 0.66. Vertical bars correspond to 95%
confidence intervals, based on SEs clustered at the group level.

retailers selling the UPC) as well as the intensive margin (sales of the UPC per store).

Fact 4: Pre-exit price–quantity patterns are consistent with a negative residual demand shock

A final advantage of the NielsenIQ Retail Scanner dataset is the ability to break down UPC sales
into price times quantity. This allows me to separately track the evolution of price and quantity
prior to exit. Using the same notation as in Equation 19, I estimate:

log Price𝑝𝑡 = 𝛾𝑝 +
24∑︁
𝑚=1

𝜋𝑚𝐷
𝑚
𝑝𝑡 + 𝛾𝑔𝑡 + 𝜀𝑝𝑡 , (20)

log Quantity𝑝𝑡 = 𝛾𝑝 +
24∑︁
𝑚=1

𝜅𝑚𝐷
𝑚
𝑝𝑡 + 𝛾𝑔𝑡 + 𝜀𝑝𝑡 . (21)

The paths of exp (𝜋𝑚) and exp (𝜅𝑚) capture the evolution of price and quantity in the two years
prior to exit. Figure 5 shows that, while the product’s relative price falls modestly, the quantity sold
collapses. These patterns are in line with a gradual negative demand shock in the lead up to exit:
despite the UPC becoming relatively cheaper, its consumption is decreasing.
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Figure 5: Evolution of UPC Price and Quantity prior to Exit
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Notes: Price curve corresponds to path of exp (𝜋𝑚) from Equation 20, normalized such that
exp (𝜋24) = 1; underlying regression has 54M observations with 𝑅2 = 0.86. Quantity curve
corresponds to path of exp (𝜅𝑚) from Equation 21, normalized such that exp (𝜅24) = 1; underlying
regression has 54M observations with 𝑅2 = 0.68. Vertical bars correspond to 95% confidence
intervals, based on SEs clustered at the group level.

Taken together, these four facts provide empirical corroboration for the paper’s novel treatment
of product exit relative to Klette and Kortum (2004) and Luttmer (2011). They show that, consistent
with the model’s predictions, product exit features negative selection and unfolds gradually. This
evidence lends credibility to my approach, which infers the wedge created by spillovers from the
extent of product exit due to downward drift toward the exit threshold.

5 Quantitative Results

The preceding sections developed the apparatus needed to quantify knowledge spillovers using
data on firm exit by age. This section puts this apparatus to work, delivering the paper’s main
quantitative finding: across U.S. private nonfarm businesses, I estimate that knowledge spillovers
create a 16 percentage point wedge between the social and private rates of return to R&D.
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5.1 Estimation strategy

My estimation targets the profile of firm exit by age. Specifically, I use the hazard rate of firm
exit for ages 1 through 19, as reported in Sterk, Sedláček and Pugsley (2021) using data from the
U.S. Census Longitudinal Business Database (LBD). The coverage of the LBD is the universe
of U.S. nonfarm private employer firms; Jarmin and Miranda (2002) and Chow, Fort, Goetz,
Goldschlag, Lawrence, Perlman, Stinson and White (2021) provide details on the construction of
this administrative dataset.

As emphasized by Hopenhayn, Neira and Singhania (2022) and Karahan, Pugsley and Şahin
(2024), these age-specific firm exit rates have been remarkably stable in the U.S. in recent decades.
This stability makes them ideal targets for the estimation of a stationary model like mine. In
addition, there is limited variation in these age-specific firm exit rates across countries (Bartelsman,
Haltiwanger and Scarpetta, 2004; Hsieh and Klenow, 2014).

As established in Section 3, the model counterpart of this profile of firm exit by age is governed
by three statistics. The first, 𝜃𝜂 − 𝛼𝛽, captures the component of the product exit rate driven by
the downward drift toward the exit threshold. The second, 𝛼𝜈, is a measure of relative volatility
and governs product exit due to idiosyncratic shocks. The third, 𝑥, is the endogenous rate at which
incumbent firms add a product to their portfolio.

Table 5: GMM Estimation Results

Symbol Point Estimate

Product exit due to drift 𝜃𝜂 − 𝛼𝛽 0.158

Relative volatility 𝛼𝜈 0.296

Product addition rate 𝑥 0.127

Notes: 𝜃 is the spillover elasticity, 𝜂 the population growth rate, 𝛼 the thinness of the entry distribution,
𝛽 and 𝜈 the drift and volatility of product quality, and 𝑥 the rate at which an incumbent firm adds a
product to its portfolio (birth rate). GMM objective is an equally-weighted least squares. No standard
errors reported because empirical targets are calculated from population-wide data.

I use a Generalized Method of Moments (GMM) procedure to estimate these three statistics,
minimizing the equally weighted sum of squared deviations between the 19 empirical and model-
implied hazard rates. The model-implied rates are obtained by numerically solving the integral
equation in Proposition 6 (so there is no need for simulation). The resulting estimates are reported
in Table 5. Because the empirical targets are constructed from population data covering the universe
of U.S. nonfarm private employer firms, there is no sampling uncertainty, and I therefore do not
report standard errors.

Figure 6 shows the model’s excellent fit to the 19 targeted moments. Despite its parsimony, the
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Figure 6: Fit of Targeted Moments
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Notes: The 19 target moments are the firm exit rate at ages 1 through 19, reported in Sterk, Sedláček
and Pugsley (2021) and calculated from LBD. Across these 19 moments, the absolute difference
between model-based and targeted has mean 0.089 p.p. and median 0.063 p.p. and the root mean
squared error (RMSE) is 0.11 p.p.

model tracks the sharp decline in hazard rates at young ages as well as the gradual flattening at
older ages, with mean and median absolute deviations below 0.1 percentage points.

To build intuition for the local sensitivity of the moments with respect to the three statistics,
Figure 7 shows the effect on the profile of firm exit by age of perturbing each of these statistics
while holding the other two fixed. The top panel shows that more product exit resulting from
downward drift toward the exit threshold (larger 𝜃𝜂 − 𝛼𝛽) raises the firm exit rate at all ages. The
bottom left panel shows that, in contrast, raising relative volatility (higher 𝛼𝜈) raises the exit rate
among young firms but lowers it among older firms. The latter reflects that surviving firms have
even more positively selected products when volatility is higher. Finally, the bottom right panel
shows that a lower product addition rate primarily increases the exit rate for mature firms: while
very young firms are still single product, this comparative static decreases the number of products
older firms have.

Figure 8 is an alternative way to present the results from this same type of exercise. The
difference relative to Figure 7 is that the y-axis shows the deviation in percentage points from
the baseline hazard rate. The point is to make visually clear that each statistic has a substantial
impact on the exit rate at some age. Table E3 in the Appendix makes the same point by showing
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Figure 7: Effect of different statistics on firm exit by age
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Notes: Each panel shows the effect of changing one of the three estimated statistics, while holding
the other two fixed. 𝜃𝜂 − 𝛼𝛽 is the product exit rate resulting from downward drift toward the exit
threshold, 𝛼𝜈 measures relative volatility of shocks, and 𝑥 is the product addition rate.

37



Figure 8: Sensitivity of firm exit at different ages with respect to each statistic
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Notes: Each curve shows the effect of changing one of the three estimated statistics, while holding
the other two fixed. 𝜃𝜂 − 𝛼𝛽 is the product exit rate resulting from downward drift toward the exit
threshold; 𝛼𝜈 is a measure of the relative volatility of the Brownian shocks; and 𝑥 is the rate at which
incumbent firms add a product to their portfolio.

the percentage point change in the model’s hazard rate of firm exit at each age resulting from a
perturbation to each of the three statistics. For transparency, I also report—in Table E4 of the
Appendix—the sensitivity of each of the three estimated statistics with respect to each of the 19
empirical moments (Andrews, Gentzkow and Shapiro, 2017).

To demonstrate how strongly the moments constrain the estimate of the product exit due to
drift, 𝜃𝜂 − 𝛼𝛽, I re-estimate restricted versions of the model and assess their fit. Specifically, I
exogenously set 𝜃𝜂 − 𝛼𝛽 to a value different than 15.8% and estimate the remaining two statistics
(relative volatility 𝛼𝜈 and product addition rate 𝑥) through a GMM procedure targeting the same
firm exit profile. Figure 9 plots the results when 𝜃𝜂 − 𝛼𝛽 is exogenously set to 6% (top left panel),
11% (top right panel), 21% (bottom left panel) and 26% (bottom right panel).

Unsurprisingly, all restricted models have a worse statistical fit, with a larger root mean squared
error (RMSE) than the baseline unrestricted model. However, it is worth noting that the fit is still
good when 𝜃𝜂 − 𝛼𝛽 is exogenously set to 11% (top right panel). Given Figure 7 and Figure 8, this
is not surprising: one way to “compensate” for the lower 𝜃𝜂 − 𝛼𝛽 is with a higher relative volatility
𝛼𝜈 (lifts firm exit among younger firms) and a lower product addition rate 𝑥 (lifts firm exit among
older firms). Consistent with this intuition, the values the GMM procedure yields in this restricted
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Figure 9: Fit of restricted models with 𝜃𝜂 − 𝛼𝛽 exogenously set to different values
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Notes: Each panel plots the 19 target moments, the baseline fit, and the fit of a restricted model with
𝜃𝜂 − 𝛼𝛽 exogenously set but 𝛼𝜈 and 𝑥 re-estimated. Top left: 𝛼𝜈 = 0.51, 𝑥 = 0. Top right: 𝛼𝜈 = 0.41,
𝑥 = 4.1%. Bottom left: 𝛼𝜈 = 0.21, 𝑥 = 20.5%. Bottom right: 𝛼𝜈 = 0.28, 𝑥 = 25.9%.

39



case are 𝛼𝜈 = 0.41 (higher than baseline value of 0.296) and 𝑥 = 4.1% (lower than baseline value
of 12.7%). This highlights the superiority of the baseline estimate: while this restricted model can
still achieve a good statistical fit to the targeted moments, it does so by implying a counterfactually
low product addition rate of 4.1%, far lower than the 12% observed in my NielsenIQ sample (see
Figure E2), which is line with the baseline estimate for 𝑥 (12.7%).

The reason the fit to targeted moments gets much worse in the 𝜃𝜂 − 𝛼𝛽 = 6% case (top left
panel) is that the product addition rate 𝑥 is bounded below by 0, so that the above “compensation”
argument can only go so far. In fact, in this case, the GMM yields 𝛼𝜈 = 0.51 and 𝑥 = 0. The top
left panel shows that with such little product exit due to drift, the model has a hard time matching
the non-trivial exit rate among older firms: while idiosyncratic shocks are another driver of product
exit, firms that survived to become old have positively selected products and the sequence of shocks
needed to get them to the exit threshold is unlikely. The bottom two panels complete this sensitivity
analysis, showing that setting 𝜃𝜂 − 𝛼𝛽 above the baseline estimate (to 21% or 26%) also leads to a
substantial deterioration in the model’s fit to targeted moments, with the RMSE rising to 0.6 pp and
1.5 pp, respectively. Taken together, these exercises demonstrate that the 15.8% estimate is tightly
pinned down, as lower and higher values lead to worse fit to targeted and/or untargeted moments.

5.2 Magnitude of knowledge spillovers

With the GMM estimates in hand, I now turn to their implications for the magnitude of knowledge
spillovers. The estimation identifies that the product exit rate resulting from the deterministic
downward drift toward the exit threshold, 𝜃𝜂 − 𝛼𝛽, is 15.8%. Rearranging this expression, the
wedge between social and private rates of return to R&D created by knowledge spillovers is:

𝜃𝜂 = 0.158 + 𝛼𝛽

To obtain a benchmark estimate for the spillover wedge, I make a conservative assumption and
set the exogenous incumbent quality growth, 𝛽, to zero (and later discuss the robustness of my
results to relaxing this assumption). This choice is conservative because it leads to a lower bound on
the wedge, as any positive 𝛽 > 0 would imply an even larger wedge. Intuitively, ignoring a positive
drift when backing out spillovers biases the estimate downward: I would rationalize a low exit rate
as resulting from the entry distribution improving slowly, while the actual reason is that incumbents
improve over their life cycle. In addition to being a conservative benchmark, this assumption is
consistent with the evidence about the consumer packaged goods sector from Argente, Lee and
Moreira (2024): they document that, on average, sales of incumbent products decline and that
growth in firm sales is entirely driven by the addition of new products to the firm’s portfolio.

Under this assumption, the analysis delivers the paper’s main result: knowledge spillovers create
a wedge of 15.8 percentage points between the social and private rates of return to R&D.

A feature of my approach is that it identifies the wedge itself, the product of the spillover
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elasticity 𝜃 and the long-run growth rate of the knowledge stock 𝑔𝐾 , which equals 𝜂 in my model.
This is a strength of the identification strategy. It makes the estimated wedge more robust to
alternative specifications of the law of motion for 𝐾𝑡 . For instance, one could easily envision
efficiency units of labor as the input into the innovation process. With growth in human capital at
rate 𝑔ℎ, the knowledge stock would then grow along the BGP at rate 𝜂 + 𝑔ℎ. My approach would
identify the product 𝜃 (𝜂 + 𝑔ℎ), which remains the economically relevant object for quantifying the
social-private R&D return gap. An additional benefit is that this bypasses the need to take a stance
on the relevant rate of population growth.8

Taste for novelty as a confounding factor. A potential threat to my approach of backing out
the wedge is that the estimated exit due to downward drift might reflect unmodeled forces that are
observationally equivalent to a negative drift (𝛽 < 0). Chief among these concerns is a consumer
taste for novelty. While preference shocks are accounted for by the Brownian motion, if consumers
intrinsically value newness, demand for incumbent products would drift down over time as the
product ages. This would lead my estimation to attribute the resulting exit to knowledge spillovers,
even in their absence.

To address this concern, I exploit sectoral heterogeneity. Figure 10 shows that, across industries,
there is a positive association between labor productivity growth and the rate of firm exit. If a taste
for novelty were the primary driver of my result, there should not be such a systematic relationship
between firm exit rates and rates of measured labor productivity growth—as in that case firm exit
would be solely driven by idiosyncratic shocks and preference for novelty, neither of which is
related to productivity growth.

As a second exercise to address this concern, I re-estimate the model for each 2-digit NAICS
sector. If my results were driven by taste for novelty, the estimated wedge should be largest in
consumer-facing sectors where fashion and fads play a more important role. Instead, if my analysis
plausibly identifies knowledge spillovers, the estimated wedge should be largest in sectors where
narrative evidence points to important spillovers.

Before showing these sectoral estimates, it is helpful to clarify what they measure. Instead
of a single sector, as in the baseline model, suppose the economy consists of 𝑆 sectors, with a
Cobb-Douglas aggregator across sectors. Innovation is directed toward a sector 𝑠, and the quality
of a new product in sector 𝑠 is drawn from an entry distribution with CCDF:

𝐹
𝐸

𝑠𝑡 (𝑄) =
𝑆∏
𝑗=1

𝐾
𝜃 𝑗→𝑠
𝑗 𝑡

𝑄−𝛼𝑠 ,

where 𝐾 𝑗 𝑡 is the cumulative stock of innovation in sector 𝑗 , and 𝜃 𝑗→𝑠 is the spillover elasticity from
8Below, I do pick a value for 𝜂 to show the model’s fit to untargeted moments. However, this choice is inconsequential

for the wedge itself.
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Figure 10: Firm exit rate and labor productivity growth across industries
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Notes: Cattaneo, Crump, Farrell and Feng (2024) binscatter with 20 bins plotting 5-year average labor
productivity growth against the 5-year average firm exit rate at the 4-digit industry level. Underlying
number of observations is 1120 with 160 4-digit NAICS code industries observed over seven 5-year
periods (from 1988 to 2022). Data on labor productivity growth are from the BLS while data on firm
exit from the Census Business Dynamics Statistics.

sector 𝑗 to sector 𝑠. Along a BGP, the wedge I recover for sector 𝑠 is 𝜂
𝑆∑
𝑗=1
𝜃 𝑗→𝑠. Therefore, it should

be interpreted as a measure of spillovers received, rather than spillovers generated. Accordingly,
this metric is not informative about the design of sector-specific R&D policies. That said, it is still
useful for two reasons. First, for the purposes of uniform policy across sectors (common for many
innovation policies), averaging spillovers received yields spillovers generated. Second, this allows
me to assess whether sectors where I identify a large wedge are plausibly benefiting from spillovers,
the source of which can be the sector itself or other sectors in the economy.

For each of the nineteen 2-digit NAICS sectors, I use the same GMM strategy as above to
estimate the three statistics by targeting the sector’s profile of firm exit by age. Table 6 presents the
estimated wedge for eight sectors: the four in which the procedure yields the highest estimated
wedge, and the four in which it leads to the lowest one.

The fact that the highest wedge is in Arts, Entertainment, and Recreation is consistent with a
taste for novelty being a potential concern. However, several factors suggest that this confounder
does not drive my results. First, this is a relatively small sector, accounting for less than 2% of both
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Table 6: Estimated Spillover Wedge Across 2-digit Sectors

Sector
Estimated Share Firm

Wedge of firms Exit Rate

First 4

Arts, Entertainment, and Recreation 25.6% 1.7% 8.6%

Mining, Quarrying, and Oil and Gas Extraction 21.6% 0.4% 8.2%

Transportation and Warehousing 18.9% 2.8% 10.8%

Information 18.5% 1.2% 10.2%

Last 4

Finance and Insurance 10.5% 4.1% 7.7%

Health Care and Social Assistance 7.0% 10.8% 6.2%

Utilities 5.5% 0.1% 4.2%

Management of Companies and Enterprises 3.3% 0.5% 3.6%

Notes: The "Estimated Wedge" is the point estimate of 𝜃𝜂 − 𝛼𝛽 from a GMM procedure targeting the
firm exit rate at ages 1, 2, 3, 4, 5, 8, 13, and 18. Underlying data are from the Business Dynamics
Statistics for the years 1996-2019.

firms and employment in the U.S. economy. Second, and more importantly, the pattern among the
other high-wedge sectors provides strong evidence supporting my interpretation of the wedge. As I
discuss next, these are technology-intensive industries where narrative evidence points to a central
role for exactly the kind of spillovers my model is designed to capture.

The Mining, Quarrying, and Oil and Gas Extraction sector provides a prime example, as
knowledge spillovers played a central role in enabling the shale gas boom. Within the sector, the
common narrative credits George Mitchell’s company with developing a breakthrough formula for
combining horizontal drilling with slickwater fracturing, a process the rest of the industry then
“adapted with awesome rapidity” (Golden and Wiseman, 2015, p. 960). But cross-industry spillovers
also played a crucial role, as this breakthrough formula itself built on a “web of technological
developments that helped spur the shale gas boom” (Golden and Wiseman, 2015, p. 973), including
“3D seismic imaging techniques [...] that have benefited from advances in computing and that draw
on technology originally developed to track submarines” (Golden and Wiseman, 2015, p. 973).

This example also clearly illustrates how my approach is complementary to those relying on
patents to quantify spillovers. In fact, “although it is somewhat surprising and counterintuitive,
during the late 1990s and early 2000s, neither Mitchell nor Devon pursued patent protection for
their respective innovations in slickwater hydraulic fracturing and horizontal drilling” (Cahoy et al.,
2013, p. 291). By lowering the cost of natural gas, these innovations reduced demand for coal and
left a detectable trace in product markets: they drove (old) firms whose businesses relied on coal
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out of business (Linn and McCormack, 2019).

Turning to Transportation and Warehousing, the major developments the sector has experienced
over this period also built on new technologies developed in other sectors. Arguably the most pivotal
of these was the Global Positioning System (GPS). Originally developed for military purposes,
GPS became widely available for commercial use in the U.S. in the mid 1990s. Its high precision
capabilities were critical “to unlocking most of the benefits of telematics”, the “field of technology
that uses in-vehicle equipment to remotely monitor vehicles” (O’Connor et al., 2019, p. 13-1).
Advanced on-board computers (OBCs) are an example of such equipment adopted by trucking
companies and Hubbard (2003) estimates that they increased capacity utilization among adopting
trucks by 13%. These gains in fleet management stem from dynamic route optimization as well as
improved monitoring of driver behavior (Hubbard, 2000).

A more recent transformation in the transportation sector is the rise of ride-sharing platforms
like Uber and Lyft. This new business model also leverages a confluence of technologies developed
in other sectors, combining the ubiquity of GPS-enabled smartphones and mobile data networks
with sophisticated matching algorithms. Cramer and Krueger (2016) document a higher utilization
rate among UberX drivers compared to traditional taxi drivers, and argue that the more efficient
technology for matching drivers and passengers is a leading contender in explaining this finding.

The case of the Information sector is perhaps the least surprising, as it encompasses software
and digital industries, home to the Open Source Software (OSS) paradigm. In fact, OSS offers a
tangible illustration of my model’s aggregate stock of knowledge: it is a public stock that firms
simultaneously contribute to and benefit from (Gortmaker, 2025).

The final column of Table 6 reveals a clear pattern: the four sectors with the highest estimated
wedge also exhibit substantially higher firm exit rates than the four with the lowest wedge. However,
the relationship is not monotonic. For instance, Transportation and Warehousing has a higher
exit rate than Mining (10.8% vs. 8.2%), yet its estimated wedge is lower. The reason is that, in
addition to differences in downward drift, exit rates also reflect differences in volatility, incumbent
innovation rates, and compositional differences in the age distribution of firms.

This underscores the necessity of using the model to learn about spillovers from firm exit rates.
By leveraging the entire profile of firm exit by age (shown for these eight sectors in Figure E3),
the GMM procedure identifies the component due to downward drift. This being said, Figure 11,
which shows the results across all sectors, confirms that the correlation between firm exit rate and
my estimated wedge is reasonably strong (0.68). The figure also highlights that the magnitude of
the estimated wedge is typically larger than the firm exit rate. The reason is that the wedge is tied to
the product exit rate, which will be larger than the firm exit rate when firms are multiproduct.
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Figure 11: Estimated Wedge and Firm Exit Rate Across Sectors
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Notes: The wedge is the point estimate of 𝜃𝜂 − 𝛼𝛽 from a GMM procedure targeting the sector’s
firm exit at ages 1, 2, 3, 4, 5, 8, 13, and 18. Pearson correlation coefficient between firm exit rate and
estimated wedge is 0.68. Underlying data are Business Dynamics Statistics for 1996-2019.

5.3 Quantitative Validation

With the cross-sectoral evidence providing qualitative support for my interpretation of the results, I
now turn to bolstering confidence in their quantitative aspect.

Direct validation of the magnitude of spillovers is notoriously difficult, as knowledge flows
themselves are inherently unobservable. However, this challenge highlights a key advantage of
the structural approach taken in this paper. Because the estimation is embedded within a general
equilibrium model, it generates a rich set of untargeted predictions about firm and product dynamics.
By demonstrating that these untargeted predictions align with established facts from the literature, I
substantiate the quantitative plausibility of the headline estimate.

In this vein, I solve for the stationary firm size distribution following the approach outlined in
Section 3. In addition to the values in Table 5, this requires calibrating the population growth rate 𝜂.
Since 𝜂 is the net firm entry rate along the BGP, I set 𝜂 = 1% to match the average annual growth
rate in the number of private nonfarm businesses between 1978 and 2019.
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Table 7: Product and Firm Entry and Exit Rates

Model Data

Product Entry Rate 17.1% -

Product Exit Rate 16.1% -

Firm Entry Rate 9.8% 9.9%

Firm Exit Rate 8.8% 8.9%

Notes: Model outcomes obtained with 𝜃𝜂 − 𝛼𝛽 = 0.158, 𝛼𝜈 = 0.296, 𝑥 = 0.127, and 𝜂 = 1%. Data
on firm entry and exit rates are from the Business Dynamics Statistics for 1978-2019 and cover the
universe of U.S. private nonfarm businesses. No available data on product entry and exit rates with
such coverage.

Product and firm dynamics. Table 7 displays entry and exit rates of firms and products. As I
target the profile of firm exit by age and pick 𝜂 to match the growth in the number of firms, the
model’s close fit for the firm entry and exit rates is unsurprising. What I want to emphasize instead
is the high churn at the product level, which implies high churn within the firm. This is consistent
with the findings of Broda and Weinstein (2010), Argente, Lee and Moreira (2018), and Argente,
Lee and Moreira (2024) for the consumer packaged goods sector and Bernard, Redding and Schott
(2010) for the manufacturing sector.

Incumbents’ Contribution to Growth. The estimation did not target the share of growth due
to incumbent firms. Based largely on the employment growth of surviving incumbent firms,
Garcia-Macia, Hsieh and Klenow (2019) estimate this share to be 75.2% across U.S. private
nonfarm businesses. Given that entry of new products is the engine of aggregate growth in my
model, the corresponding metric here is the share of product entry accounted for by incumbent firms.
From Table 7, the product entry rate is 17.1%, and from Table 5, an incumbent firm adds a product
to its portfolio at rate 12.7%. Therefore, the share of growth due to incumbents in the model is
74.3% (12.7/17.1), remarkably close to the estimate from Garcia-Macia, Hsieh and Klenow (2019).

Consequences of selection. In Section 4, I showed that the average product exit rate is lower
among firms with more products (Fact 2). There, I interpreted the fact as evidence in support of
moving away from modeling product exit as a Poisson process. Here, I show how the estimated
model endogenously generates this feature as a consequence of selection.

The top panel of Figure 12 illustrates this finding. It plots the model’s relationship between
a firm’s average product exit rate (𝜆𝑛) against its number of products (𝑛). The rate is highest for
single product firms at 16.2% and declines monotonically as firms grow, slowly approaching a limit
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Figure 12: Consequences of Selection on Model’s Firm Size Distribution
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Notes: The top panel shows 𝜆𝑛, the average product exit rate among 𝑛-product firms from Definition 4,
as a function of 𝑛. The bottom panel shows the CDF of product log-relative quality (𝑞) among single
product firms minus the CDF of product product log-relative quality (𝑞) among 𝑛-product firms
(𝑛 > 1). A positive gap means the latter (𝑛 > 1) first order stochastically dominates the former (𝑛 = 1).
Refer to Appendix C for details about computational solution.
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of 15.8%. While the range is narrower than the one in Figure 3, it is worth keeping in mind that the
underlying samples are different.

The bottom panel of Figure 12 shows that this reflects firms with more products endogenously
having better products. It plots the difference between the cumulative distribution function (CDF)
of product log-relative quality among single-product firms and that among 𝑛-product firms for
𝑛 > 1. The fact that this difference is positive for the different values of 𝑛 > 1 indicates first
order stochastic dominance: the product quality distribution for multiproduct firms is better than
for single product firms. Since the difference from the single product CDF widens with 𝑛, the
figure also reveals a ranking of product quality by firm’s number of products: the product quality
distribution among 𝑛-product firms first-order stochastically dominates that among 𝑛′-product firms
whenever 𝑛 > 𝑛′. Finally, the vertical gap between the curves for consecutive values of 𝑛 shrinks as
𝑛 increases, showing that the distribution of product quality converges to its large 𝑛 limit.

These features of the model’s stationary equilibrium are consequences of positive selection into
survival at the product level. Since a firm starts with a single product and gradually expands it
portfolio through R&D, ending up with many products requires good draws and/or positive shocks.

5.4 Robustness Checks

Robustness to 𝛽 > 0. The headline estimate follows from the conservative assumption that 𝛽, the
exogenous drift in an incumbent’s product quality, is 0. While a literal interpretation of 𝛽 < 0 is
hard to defend, I explained above that it is isomorphic to a taste for novelty and showed evidence
that such explanations do not seem to be driving my results. I now discuss the sensitivity of my
results to entertaining 𝛽 > 0. This will unambiguously make the gap I estimate even larger, but the
point is to show that the 15.8% gap is not a very loose lower bound.

To do so, I need to calibrate the value of 𝛼 as 𝜃𝜂 = 15.8% + 𝛼𝛽. A transparent calibration
strategy follows from realizing that 𝛼

𝜎−1 is the Pareto tail of the firm size distribution. The reason
is that the number of products per firm has a geometric-like thin tail, so that the Pareto tail in
the distribution of sales across firms is inherited from the distribution of sales per product. From
Proposition 2, the Pareto tail index of the distribution of quality across products is min{𝛼, 𝜁}. The
parameters from Table 5 along with my calibration of 𝜂 = 1% imply that 𝛼 < 𝜁 because

𝜁

𝛼
=
𝜃𝜂 +

√︁
(𝜃𝜂)2 + 2𝜂(𝛼𝜈)2
(𝛼𝜈)2

≈ 3.7 .

Since product sales are proportional to quality raised to the power 𝜎 − 1, it follows that the Pareto
tail of the distribution of sales is 𝛼

𝜎−1 . As a result, to match the tail of 1.06 in the data (Luttmer,
2007), I set 𝛼

𝜎−1 = 1.06. For validation, I check that the resulting standard deviation in the annual
growth rate of sales across firms (0.41) is consistent with the empirical analogue for U.S. private
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nonfarm businesses (0.45, from Sterk, Sedláček and Pugsley, 2021).9 To get the corresponding 𝛼, I
consider a range of values for the elasticity of substitution 𝜎.

Table 8: Sensitivity of estimated wedge to positive drift in incumbent product quality

𝛽

0.25% 0.5% 0.75% 1%

𝜎

4 16.6% 17.3% 18.1% 18.8%

6 17.1% 18.3% 19.6% 20.8%

8 17.6% 19.3% 21.1% 22.8%

10 18.1% 20.3% 22.6% 24.8%

Notes: Spillover wedge 𝜃𝜂 for different values of 𝛽 > 0 and 𝜎. 𝛽 is the exogenous drift in the quality
of an incumbent product, 𝜎 is the elasticity of substitution between products. 𝛼

𝜎−1 calibrated to 1.06.
The baseline estimate of 15.8% is obtained under the conservative assumption that 𝛽 = 0.

Table 8 presents the results from this robustness exercise. It displays the estimate of 𝜃𝜂, the gap
between social and private rates of return to R&D, for different calibrations of 𝛽 > 0 and 𝜎 (the
dependence on the latter is due the calibration pinning down 𝛼

𝜎−1). The key takeaway is that the
15.8% headline number, while conservative, is not a loose lower bound: even when allowing for
1% drift in incumbent product quality and an elasticity of substitution as high as 10, the estimated
gap is 24.8%.

Quantifying Spillovers with Product Data. As I emphasized on a number of occasions, the key
insight the paper leverages to quantify spillovers links dynamics of product exit to the magnitude of
spillovers. The reason I rely on firm-level data to do the quantification is that comprehensive data
at the product level are not available.

As a robustness exercise, I assess the sensitivity of my results to doing the quantification with
product data instead of firm data. This requires a setting where both product and firm data are
available, so that I can compare the results across the two methods. The food manufacturing
sector provides such an opportunity. For firm exit by age, I use data from the Business Dynamics
Statistics for the 3-digit NAICS sector 311 (food manufacturing).10 For product exit by age, I use
my NielsenIQ sample and exclude UPCs classified under “Health & Beauty Care”, “Non Food
Grocery”, and “General Merchandise” so that the sample is comparable to food manufacturing.

9Given values in Table 5 and 𝜂 = 1%, 𝛼
𝜎−1 pins down this standard deviation because it governs the dispersion in

sales of new products firms add to their portfolios.
10While I do link NielsenIQ to the GS1 database and can hence observe which products are produced by the same

firm, firm age is censored for more than 80% of firms, preventing any meaningful estimation with firm-level data.
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The quantification with product-level data leverages Proposition 5. Specifically, by targeting the
profile of product exit by age, I recover 𝜃𝜂 − 𝛼𝛽 and 𝛼𝜈. Identification follows from the former
raising product exit at all ages and the latter raising it for young products but lowering it for older
ones (due to selection). In contrast, the quantification with firm-level data uses the same GMM
strategy as above, and identifies the rate of incumbent innovation 𝑥 in addition to 𝜃𝜂 − 𝛼𝛽 and 𝛼𝜈.

Table 9: Results with Product vs Firm Level Data for Food Manufacturing

Product Data Firm Data

𝜃𝜂 − 𝛼𝛽 0.163 0.159
(0.001)

𝛼𝜈 0.277 0.484
(0.006)

𝑥 - 0.081

Notes: 𝜃𝜂 − 𝛼𝛽 is product exit due to downward drift, 𝛼𝜈 governs extent of product exit due to shocks,
and 𝑥 is the rate at which incumbent firms add a product to their portfolio. Product-level results are
obtained from an optimally weighted GMM targeting the profile of product exit at ages 1 through 11,
with underlying data from NielsenIQ. Corresponding standard errors are in parentheses. Firm-level
results are obtained from a GMM targeting the profile of firm exit at ages 1, 2, 3, 4, 5, 8, 13, and 18
in the food manufacturing sector (NAICS 311), with underlying data from the Business Dynamics
Statistics. No standard errors reported because underlying Census data covers the entire population.

Table 9 presents the results from this exercise. Focusing on the spillover wedge—the statistic
of interest—the estimate obtained using product-level data is 16.3%, while that obtained from
firm-level data is 15.9%. This alignment lends credibility to the headline finding, suggesting my
methodology successfully recovers the gradual component of product exit from firm data.

6 Conclusion

Knowledge spillovers have long been recognized as a reason the social rate of return to R&D might
exceed the private one. Despite this serving as a common rationale for government support for
R&D, existing evidence on this gap “is quite thin” (Bryan and Williams, 2021, p. 290).

This paper introduces a new approach to quantify this gap by leveraging data on firm exit by
age. The intuition is that stronger knowledge spillovers accelerate growth across successive cohorts
of entrants, which in turn accelerates the obsolescence of incumbent products. To carry out the
quantification, I develop a new semi-endogenous growth model featuring multiproduct firms and
negative selection into product exit. Through the lens of this model, the profile of firm exit by
age is informative about the wedge between social and private rates of return to R&D created by
knowledge spillovers. As such, the key input to quantifying spillovers using my approach is data on
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firm exit by age. This highlights that an important advantage of this approach, relative to existing
ones, is its reliance on data that are far more comprehensive and widely available than patents or
reported R&D.

Applying this framework to U.S. private nonfarm businesses, my headline finding is that
knowledge spillovers create a 16 percentage point wedge between the social and private rates of
return to R&D. This result strengthens the limited existing evidence that spillovers are sizable and
there are potentially large welfare benefits from government policies that support innovation.

While my analysis quantifies the magnitude of knowledge spillovers, it leaves open an important
set of questions that matter for the policy implications of my results. Are these spillovers primarily
driven by basic research conducted in universities or by applied research within firms? Which
sectors are the source of these spillovers? How important are the different mechanisms through
which they occur—such as labor mobility or supply linkages? And how much of the wedge I
estimate is already internalized by existing innovation policies, including grants, subsidies, tax
credits, and intellectual property protections? I leave these exciting questions to future research.
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A Summary of Notation and Symbols

Table A1: Symbols of endogenous objects featuring in definition of equilibrium (Definition 1)

𝑁𝑡 Population

𝐾𝑡 Stock of products created

𝑚(𝑞, 𝑡) Cross-sectional measure of incumbent product log-relative qualities

𝑄
𝑡

Endogenous exit threshold

𝑟𝑡 Interest rate

𝑤𝑡 Wage

𝑃𝑝𝑡 Price of 𝑝

𝑄𝑝𝑡 Product’s quality

𝑞𝑝𝑡 Product’s log quality relative to exit threshold

𝑉𝑡 (𝑄𝑝𝑡) Product’s value, with 𝑉 (𝑞, 𝑡) = 𝑉𝑡
(
𝑄
𝑡
𝑒𝑞

)
𝑐𝑡 Per capita consumption

𝑎𝑡 Individual’s asset holding

𝑐𝑝𝑡 Per capita consumption of 𝑝

𝑌𝑝𝑡 Aggregate supply of 𝑝

𝐿𝑝𝑡 𝑝’s production labor

𝐼𝑝𝑡 𝑝’s R&D labor

𝑆𝑡 Startup entrepreneurs (entry labor)
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Table A2: Symbols of parameters and auxiliary objects

𝜂 Population growth rate 𝜌 Rate of time preference

𝛾 Coefficient of relative risk aversion 𝜎 Elasticity of substitution

𝛽 Drift in incumbent’s log quality 𝜈 Diffusion in incumbent’s log quality

𝜃 Spillover elasticity 𝛼 Thinness of entry distribution

𝜀 Inverse of firm entry cost F Overhead cost

𝛿 Diminishing returns in incumbent innovation 𝜗 Scale param. in incumbent innovation

𝜁 Luttmer tail index (Proposition 2) 𝜉 param. in HJB solution (Proposition 3)

𝐴 Process efficiency 𝐹
𝐸

𝑡 (.) CCDF of entry distribution

𝑔𝑄 Quality growth rate 𝑔 Consumption per capita growth rate

V(𝑞) Stationary product value 𝑂𝑤𝑡 Option value of product addition

𝐼 R&D labor per incumbent product 𝐿𝑡 Aggregate production labor

𝑀𝑡 Measure of products 𝑄𝑡 Average quality supplied

𝑓𝑝 (𝑞) Stationary PDF of incumbent prod 𝐸
𝑓
𝑡 Flow of entering firms

𝐸𝑡/𝑀𝑡 Product entry rate 𝐷𝑡/𝑀𝑡 Product exit rate

ℓ(𝑎) PDF of product’s lifespan 𝑑𝑝 (𝑎) Product’s exit hazard at age 𝑎

Γ(𝑎) CDF of firm’s lifespan 𝑑 𝑓 (𝑎) Firm’s exit hazard at age 𝑎

𝑥 Firm’s product addition rate 𝜆𝑛 Mean prod exit rate for 𝑛−prod firm

𝜇𝑛𝑡 (q) Measure of 𝑛−prod firms with portfolio q 𝑓𝑛 (q) =
𝑛∏
𝑖=1
𝜑𝑛 (𝑞𝑖) PDF among 𝑛−prod firms

Ψ𝑛 Share of products held by 𝑛−prod firms Φ𝑛 Share of firms with 𝑛 products

𝜃𝜂 − 𝛼𝛽 Product Exit due to downward drift 𝛼𝜈 Relative volatility of shocks
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B Proofs and derivations of results in main text

B.1 Product characteristics along balanced growth path

B.1.1 Proof of Proposition 2

Along the BGP, 𝑚(𝑞, 𝑡) = 𝑀𝑡 𝑓𝑝 (𝑞) and 𝑀𝑡 grows at rate 𝜂, so:

𝜕𝑚(𝑞, 𝑡)
𝜕𝑡

= 𝜂 𝑀𝑡 𝑓𝑝 (𝑞) ;
𝜕𝑚(𝑞, 𝑡)
𝜕𝑞

= 𝑀𝑡 𝑓
′
𝑝 (𝑞) ;

𝜕2𝑚(𝑞, 𝑡)
𝜕𝑞2

= 𝑀𝑡 𝑓
′′
𝑝 (𝑞)

Plugging back into the KFE (Equation 9) yields a second order ODE in 𝑓𝑝 (𝑞):

𝜈2

2
𝑓 ′′𝑝 (𝑞) +

(
𝑔𝑄 − 𝛽

)
𝑓 ′𝑝 (𝑞) − 𝜂 𝑓𝑝 (𝑞) = − 𝐸𝑡

𝑀𝑡

𝛼 𝑒−𝛼𝑞 .

The stationary distribution solves this ODE subject to:∫ ∞
0

𝑓𝑝 (𝑞) 𝑑𝑞 = 1 ; 𝑓𝑝 (𝑞) ≥ 0 ; 𝑓𝑝 (0) = 0

The first requirement leads to a zero coefficient on the positive homogeneous root, so:

𝑓𝑝 (𝑞) = 𝐶2𝑒
−𝜁𝑞 + 𝐶3𝑒

−𝛼𝑞 with 𝐶3 =
−𝛼 𝐸𝑡

𝑀𝑡

𝜈2

2 𝛼
2 − (𝑔𝑄 − 𝛽)𝛼 − 𝜂

and 𝜁 as defined in Proposition 2. The boundary condition 𝑓𝑝 (0) = 0 yields 𝐶2 = −𝐶3. Hence

1 =

∫ ∞
0
𝑓𝑝 (𝑞)𝑑𝑞 =

∫ ∞
0
𝐶3

(
𝑒−𝛼𝑞 − 𝑒−𝜁𝑞

)
𝑑𝑞 =⇒ 𝐶3 =

𝛼𝜁

𝜁 − 𝛼 =⇒ 𝑓𝑝 (𝑞) =
𝛼 𝜁

𝜁 − 𝛼

(
𝑒−𝛼𝑞 − 𝑒−𝜁𝑞

)
Equating the two expressions for 𝐶3 and simplifying yields an expression for the entry rate:

𝛼𝜁

𝜁 − 𝛼 =
− 𝐸𝑡
𝑀𝑡
𝛼

𝜈2

2 𝛼
2 − (𝑔𝑄 − 𝛽)𝛼 − 𝜂

=⇒ 𝐸𝑡

𝑀𝑡

=
𝜁

𝛼 − 𝜁

(
𝜈2

2
𝛼2 − (𝑔𝑄 − 𝛽)𝛼 − 𝜂

)
★
=⇒ 𝐸𝑡

𝑀𝑡

=
𝜁

𝛼 − 𝜁

(
𝜈2

2
𝛼2 − (𝑔𝑄 − 𝛽)𝛼 −

(
𝜈2

2
𝜁2 − (𝑔𝑄 − 𝛽)𝜁

))
=⇒ 𝐸𝑡

𝑀𝑡

=
𝜈2

2
𝜁 𝛼 + 𝜈2

2
𝜁2 − (𝑔𝑄 − 𝛽)𝜁

★
=⇒ 𝐸𝑡

𝑀𝑡

=
𝜈2

2
𝜁 𝛼 + 𝜂
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where ★ follows from −𝜁 being a root of the characteristic polynomial. Notice the intuitive
expression I got for the product entry rate:

𝐸𝑡

𝑀𝑡

= 𝜂 + 𝜈2

2
𝑓 ′(0) .

Since the measure of products grows at rate 𝜂, the product entry rate exceeds the product exit rate
by 𝜂. The second summand is precisely the exit rate, as it gives the instantaneous rate at which,
in the stationary distribution, 𝑞 – which evolves according to the SDE in Equation 8 – hits the
absorbing boundary condition at 0.

B.1.2 Proof of Proposition 3

Plugging the stationary distribution into the definition of 𝑄𝑡 yields

𝑄𝑡 ≡
(
1

𝑀𝑡

∫
𝑝∈Ω𝑡

𝑄𝜎−1
𝑝𝑡 𝑑𝑝

) 1
𝜎−1

= 𝑄
𝑡

(∫ ∞
0
𝑒(𝜎−1)𝑞 𝑓𝑝 (𝑞)𝑑𝑞

) 1
𝜎−1

Assumption 2 guarantees that 𝛼 > 𝜎 − 1 and 𝜁 > 𝜎 − 1, so that:(
𝑄𝑡

𝑄
𝑡

)𝜎−1
=

𝛼

𝛼 − (𝜎 − 1)
𝜁

𝜁 − (𝜎 − 1) .

Plugging back into the HJB yields

𝑟𝑡𝑉 (𝑞, 𝑡) = 𝑤𝑡
[
(𝛼 − (𝜎 − 1)) (𝜁 − (𝜎 − 1))

(𝜎 − 1)𝛼𝜁
𝐿𝑡

𝑀𝑡

𝑒(𝜎−1)𝑞 − (F −𝑂)
]

+ ¤𝑉 (𝑞, 𝑡) +
(
𝛽 − 𝑔𝑄𝑡

) 𝜕𝑉 (𝑞, 𝑡)
𝜕𝑞

+ 𝜈
2

2

𝜕2𝑉 (𝑞, 𝑡)
𝜕𝑞2

.

Guess that𝑉 (𝑞, 𝑡) = 𝑤𝑡V(𝑞), thenV(𝑞) solves the second order ODE with constant coefficients:11

𝜈2

2
V′′(𝑞) + (𝛽−𝑔𝑄)V′(𝑞)−(𝑟−𝑔)V(𝑞) = −

[
(𝛼 − (𝜎 − 1)) (𝜁 − (𝜎 − 1))

𝛼𝜁 (𝜎 − 1)
𝐿𝑡

𝑀𝑡

𝑒(𝜎−1)𝑞 − (F −𝑂)
]

subject to:

V(𝑞) ≥ 0 ; V(0) = 0 ; V′(0) = 0 andV(𝑞) <
(𝛼−(𝜎−1)) (𝜁−(𝜎−1))

𝛼𝜁 (𝜎−1)
𝐿𝑡
𝑀𝑡
𝑒(𝜎−1)𝑞

𝑟 −
[
𝑔 + (𝜎 − 1) (𝛽 − 𝑔𝑄) + 𝜈2

2 (𝜎 − 1)2
] .

11𝐿𝑡 and 𝑀𝑡 both grow at rate 𝜂, so their ratio is constant.
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The first constraint follows from the fact that the firm can always choose to shutdown production.
The second and third constraints are respectively the value matching and smooth pasting conditions.
To understand the fourth condition, note that the flow of dividends, gross of overhead and option
value, is the numerator of the right hand side scaled by 𝑤𝑡 . Using Ito’s lemma, this flow grows
at rate 𝑔 + (𝜎 − 1) (𝛽 − 𝑔𝑄) + 𝜈2

2 (𝜎 − 1)
2. So the right hand side of the fourth constraint is the

PDV of flow of dividends gross of the overhead and option value. The inequality then follows from
F > 𝑂. The solution to this ODE is:

V(𝑞) = 𝐶1 𝑒
𝑧𝑞 + 𝐶2 𝑒

−𝜉𝑞 +
(𝛼−(𝜎−1)) (𝜁−(𝜎−1))

𝛼𝜁 (𝜎−1)

𝑟 −
[
𝑔 + (𝜎 − 1) (𝛽 − 𝑔𝑄) + 𝜈2

2 (𝜎 − 1)2
] 𝐿𝑡

𝑀𝑡

𝑒(𝜎−1)𝑞 − F −𝑂
𝑟 − 𝑔

with 𝑧 ≡
−(𝛽 − 𝑔𝑄) +

√︁
(𝑔𝑄 − 𝛽)2 + 2𝜈2(𝑟 − 𝑔)
𝜈2

and 𝜉 ≡
𝛽 − 𝑔𝑄 +

√︁
(𝛽 − 𝑔𝑄)2 + 2𝜈2(𝑟 − 𝑔)

𝜈2

Since 𝑧 > 0 (while −𝜉 < 0), satisfying the inequality constraints onV(𝑞) requires 𝐶1 = 0. The
value matching and smooth pasting conditions are two equations in two unknowns, 𝐿𝑡

𝑀𝑡
and 𝐶2.

Solving yields:

V(𝑞) = F −𝑂
𝑟 − 𝑔

[
𝜉

𝜉 + 𝜎 − 1𝑒
(𝜎−1)𝑞 + 𝜎 − 1

𝜉 + 𝜎 − 1𝑒
−𝜉𝑞 − 1

]
𝐿𝑡

𝑀𝑡

= (F −𝑂) 𝛼𝜁 (𝜎 − 1)
(𝛼 − (𝜎 − 1)) (𝜁 − (𝜎 − 1))

𝜉

𝜉 + 𝜎 − 1
𝑟 − [𝑔 + (𝜎 − 1) (𝛽 − 𝑔𝑄) + 𝜈2

2 (𝜎 − 1)
2]

𝑟 − 𝑔 .

B.1.3 Labor allocations along balanced growth path

The expression for 𝐿𝑡
𝑀𝑡

was obtained above when solving the HJB. The remaining equation follows
from the free entry condition along the BGP. Using a change of variables, relative quality of new
products is drawn from the density

𝐾𝜃𝑡

𝑄𝛼
𝑡

𝛼𝑒−𝛼𝑞 for 𝑞 ≥ ln

(
𝐾𝜃𝑡

𝑄𝛼
𝑡

)
where this pdf is time-invariant along the BGP since 𝑄𝛼

𝑡
and 𝐾𝜃𝑡 both grow at rate 𝜃𝜂. Using

Assumption 3, the free entry condition reads

𝜀

∫ ∞
0
𝑤𝑡V(𝑞)

𝐾𝜃𝑡

𝑄𝛼
𝑡

𝛼𝑒−𝛼𝑞 𝑑𝑞 = 𝑤𝑡
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The integration starts at 0 because for 𝑞 ≤ 0,V(𝑞) = 0. Plugging inV yields:

𝑄𝛼
𝑡

𝐾𝜃𝑡
= 𝜀
F −𝑂
𝑟 − 𝑔

(𝜎 − 1)𝜉
(𝛼 + 𝜉) (𝛼 − (𝜎 − 1)) .

So Assumption 3 places a lower bound on the PDV of the effective fixed cost of operation relative
to the entry cost:

F−𝑂
𝑟−𝑔
1
𝜀

≥
(
1 + 𝛼

𝜉

) ( 𝛼

𝜎 − 1 − 1
)
. (22)

To see how the expression for
𝑄𝛼
𝑡

𝐾 𝜃𝑡
helps us pin down the labor allocations, note that

𝜂𝐾𝑡 = ¤𝐾𝑡 = 𝜀𝑆𝑡 +
𝜗

1 − 𝛿 𝐼
1−𝛿𝑀𝑡 =⇒ 𝑆𝑡

𝑀𝑡

=
𝜂

𝜀

𝐾𝑡

𝑀𝑡

− 𝐼

1 − 𝛿

where I used the fact that 𝐼 =
(
𝜗
𝜀

) 1
𝛿 . Now,

𝐸𝑡 = 𝐹
𝐸

𝑡

(
𝑄
𝑡

)
¤𝐾𝑡 =

𝐾𝜃𝑡

𝑄𝛼
𝑡

𝜂𝐾𝑡 =⇒ 𝐾𝑡

𝑀𝑡

=
1

𝜂

𝐸𝑡

𝑀𝑡

𝑄𝛼
𝑡

𝐾𝜃𝑡

Plugging the expression for 𝐾𝑡
𝑀𝑡

back into 𝑆𝑡
𝑀𝑡

, I get:

𝑆𝑡

𝑀𝑡

=
1

𝜀

𝐸𝑡

𝑀𝑡

𝑄𝛼
𝑡

𝐾𝜃𝑡
− 𝐼

1 − 𝛿 .

Plugging in the expressions for the entry rate and 𝑄𝛼𝑡
𝐾 𝜃𝑡

yields:

𝑆𝑡

𝑀𝑡

=

(
𝜂 + 𝜈2

2
𝜁𝛼

)
F −𝑂
𝑟 − 𝑔

(𝜎 − 1)𝜉
(𝛼 + 𝜉) (𝛼 − (𝜎 − 1)) −

𝐼

1 − 𝛿

Adding F + 𝐼 on both sides and using 𝑂 = 𝛿
1−𝛿 𝐼 yields:

𝑆𝑡

𝑀𝑡

+ 𝐼 + F = (F −𝑂)
[
𝜂 + 𝜈2

2 𝜁𝛼

𝑟 − 𝑔
(𝜎 − 1)𝜉

(𝛼 + 𝜉) (𝛼 − (𝜎 − 1)) + 1

]
.

I now have all I need to solve for 𝑀𝑡
𝑁𝑡

using the labor resource constraint.
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B.2 Planner’s problem

Define 𝑧𝑝𝑡 = ln𝑄𝑝𝑡 and denote by 𝜇(𝑧, 𝑡) the measure of products with log-quality 𝑧 at 𝑡. The entry
distribution in terms of 𝑧 then has density

𝑓̃ 𝐸𝑡 (𝑧) = 𝛼𝐾𝜃𝑡 𝑒−𝛼𝑧 for 𝑧 ≥ 𝜃

𝛼
ln𝐾𝑡

By symmetry, the planner picks 𝐼𝑝𝑡 = 𝐼𝑡 and strict positivity follows from the Inada condition at 0.
Moreover, once total production 𝐿𝑡 is chosen, standard CES allocations yield

𝐿𝑡 =

∫
𝑧>𝑧

𝑡

𝐿𝑡 (𝑧)𝜇(𝑧, 𝑡)𝑑𝑧 =⇒ 𝑐𝑡 =
𝐴𝐿𝑡

𝑁𝑡

(∫
𝑧>𝑧

𝑡

𝑒(𝜎−1)𝑧 𝜇(𝑧, 𝑡) 𝑑𝑧
) 1
𝜎−1

.

So the planner’s problem features an infinite dimensional state variable (Nuño and Moll, 2018):

max
𝑆𝑡 ,𝐿𝑡 ,𝐼𝑡
𝑑𝑡

∫ ∞
0
𝑒−(𝜌−𝜂)𝑡

(
𝐴
𝐿𝑡
𝑁𝑡

(∫
𝑧>𝑧

𝑡

𝑒(𝜎−1)𝑧 𝜇(𝑧, 𝑡) 𝑑𝑧
) 1
𝜎−1

)1−𝛾
− 1

1 − 𝛾 𝑑𝑡

subject to 𝜇

(
𝑧
𝑡
, 𝑡

)
= 0

∀𝑧 > 𝑧
𝑡
, ¤𝜇(𝑧, 𝑡) = −𝛽 𝜕𝜇(𝑧, 𝑡)

𝜕𝑧
+ 𝜈

2

2

𝜕2𝜇(𝑧, 𝑡)
𝜕𝑧2

+ ¤𝐾𝑡 𝐾𝜃𝑡 𝛼𝑒−𝛼𝑧1{𝑧> 𝜃
𝛼
ln𝐾𝑡}

¤𝑧
𝑡
= 𝑑𝑡 ≥ 0

¤𝐾𝑡 = 𝜀𝑆𝑡 +
𝜗

1 − 𝛿 𝐼
1−𝛿
𝑡

∫
𝑧>𝑧

𝑡

𝜇(𝑧, 𝑡)𝑑𝑧

𝑁𝑡 = 𝑆𝑡 + 𝐿𝑡 +
∫
𝑧≥𝑧

𝑡

(F + 𝐼𝑡) 𝜇(𝑧, 𝑡) 𝑑𝑧

This is an optimal control problem with 𝑆𝑡 , 𝐿𝑡 , 𝐼𝑡 , and 𝑑𝑡 (how much to lift the threshold) as controls.
The states are 𝑧

𝑡
(lowest quality still “alive”), 𝐾𝑡 and {𝜇(𝑧, 𝑡)}. Let 𝜔𝑡 be the Lagrange multiplier on

the labor resource constraint, Υ(𝑧, 𝑡) be the costate associated with 𝜇(𝑧, 𝑡), 𝜒𝑡 the costate associated
with 𝐾𝑡 , and Ξ𝑡 the costate associated with 𝑧

𝑡
. Then the current-value Hamiltonian is:

H =
𝑐
1−𝛾
𝑡 − 1
1 − 𝛾 + 𝜒𝑡

(
𝜀𝑆𝑡 +

𝜗

1 − 𝛿 𝐼
1−𝛿
𝑡

∫
𝑧>𝑧

𝑡

𝜇(𝑧, 𝑡)𝑑𝑧
)
+

∫
Υ(𝑧, 𝑡) ¤𝜇(𝑧, 𝑡)𝑑𝑧

+ 𝜔𝑡

(
𝑁𝑡 − 𝑆𝑡 − 𝐿𝑡 −

∫
𝑧≥𝑧

𝑡

(F + 𝐼𝑡) 𝜇(𝑧, 𝑡) 𝑑𝑧
)
+ Ξ𝑡𝑑𝑡
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It is going to be helpful to plug the KFE into
∫
Υ(𝑧, 𝑡) ¤𝜇(𝑧, 𝑡)𝑑𝑧 and then integrate by parts to move

the derivatives to Υ. To deal with the boundary terms,

Assumption 5. I suppose (and verify later) that:

lim
𝑧→∞

Υ(𝑧, 𝑡)𝜇(𝑧, 𝑡) = 0 and lim
𝑧→∞

Υ(𝑧, 𝑡) 𝜕𝜇(𝑧, 𝑡)
𝜕𝑧

= 0 .

Using these assumptions, along with 𝜇(𝑧
𝑡
, 𝑡) = 0:

∞∫
𝑧
𝑡

Υ(𝑧, 𝑡) ¤𝜇(𝑧, 𝑡)𝑑𝑧 = −𝜈
2

2

𝜕𝜇

(
𝑧
𝑡
, 𝑡

)
𝜕𝑧

Υ

(
𝑧
𝑡
, 𝑡

)
+
∞∫
𝑧
𝑡

𝜇(𝑧, 𝑡)
(
𝛽
𝜕Υ(𝑧, 𝑡)
𝜕𝑧

+ 𝜈
2

2

𝜕2Υ(𝑧, 𝑡)
𝜕𝑧2

)
𝑑𝑧

+ ¤𝐾𝑡𝐾𝜃𝑡

∞∫
𝑧
𝑡

Υ(𝑧, 𝑡)𝛼𝑒−𝛼𝑧1{𝑧> 𝜃
𝛼
ln𝐾𝑡}𝑑𝑧

=⇒ H =

(
𝐴
𝐿𝑡
𝑁𝑡

(∫
𝑧>𝑧

𝑡

𝑒(𝜎−1)𝑧 𝜇(𝑧, 𝑡) 𝑑𝑧
) 1
𝜎−1

)1−𝛾
− 1

1 − 𝛾 + 𝜒𝑡

(
𝜀𝑆𝑡 +

𝜗

1 − 𝛿 𝐼
1−𝛿
𝑡

∫
𝑧>𝑧

𝑡

𝜇(𝑧, 𝑡)𝑑𝑧
)

− 𝜈
2

2
Υ

(
𝑧
𝑡
, 𝑡

) 𝜕𝜇 (
𝑧
𝑡
, 𝑡

)
𝜕𝑧

+
∫ ∞
𝑧
𝑡

𝜇(𝑧, 𝑡)
(
𝛽
𝜕Υ(𝑧, 𝑡)
𝜕𝑧

+ 𝜈
2

2

𝜕2Υ(𝑧, 𝑡)
𝜕𝑧2

)
𝑑𝑧

+
(
𝜀𝑆𝑡 +

𝜗

1 − 𝛿 𝐼
1−𝛿
𝑡

∫
𝑧>𝑧

𝑡

𝜇(𝑧, 𝑡)𝑑𝑧
)
𝐾𝜃𝑡

∫ ∞
𝑧
𝑡

𝛼𝑒−𝛼𝑧Υ(𝑧, 𝑡)1{𝑧> 𝜃
𝛼
ln𝐾𝑡}𝑑𝑧

+ 𝜔𝑡

(
𝑁𝑡 − 𝑆𝑡 − 𝐿𝑡 −

∫
𝑧≥𝑧

𝑡

(F + 𝐼𝑡) 𝜇(𝑧, 𝑡) 𝑑𝑧
)
+ Ξ𝑡𝑑𝑡 .

The optimality conditions for the controls 𝐿𝑡 , 𝑆𝑡 , 𝐼𝑡 and 𝑑𝑡 are (respectively):

H𝐿𝑡 = 0 =⇒ 𝜔𝑡 =
𝑐
1−𝛾
𝑡

𝐿𝑡
(23)

H𝑆𝑡 = 0 =⇒ 𝜔𝑡 = 𝜀

(
𝜒𝑡 + 𝐾𝜃𝑡

∫ ∞
𝑧
𝑡

𝛼𝑒−𝛼𝑧Υ(𝑧, 𝑡)1{𝑧> 𝜃
𝛼
ln𝐾𝑡}𝑑𝑧

)
(24)

H𝐼𝑡 = 0 =⇒ 𝜔𝑡 = 𝜗𝐼
−𝛿
𝑡

(
𝜒𝑡 + 𝐾𝜃𝑡

∫ ∞
𝑧
𝑡

𝛼𝑒−𝛼𝑧Υ(𝑧, 𝑡)1{𝑧> 𝜃
𝛼
ln𝐾𝑡}𝑑𝑧

)
(25)

Ξ𝑡𝑑𝑡 = 0 =⇒ 𝑑𝑡 = 0 or Ξ𝑡 = 0
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𝑧
𝑡

adjoint =⇒ (𝜌 − 𝜂)Ξ𝑡 = ¤Ξ𝑡 −
𝜈2

2

©­­«
𝜕Υ

(
𝑧
𝑡
, 𝑡

)
𝜕𝑧

𝜕𝜇

(
𝑧
𝑡
, 𝑡

)
𝜕𝑧

+ Υ
(
𝑧
𝑡
, 𝑡

) 𝜕2𝜇 (
𝑧
𝑡
, 𝑡

)
𝜕𝑧2

ª®®¬
−

(
𝜀𝑆𝑡 +

𝜗

1 − 𝛿 𝐼
1−𝛿
𝑡

∫
𝑧>𝑧

𝑡

𝜇(𝑧, 𝑡)𝑑𝑧
)
𝐾𝜃𝑡 𝛼𝑒

−𝛼𝑧
𝑡Υ

(
𝑧
𝑡
, 𝑡

)
1{𝑧𝑡> 𝜃

𝛼
ln𝐾𝑡}𝑑𝑧

(26)

𝐾𝑡 adjoint =⇒ (𝜌−𝜂)𝜒𝑡 = ¤𝜒𝑡+𝜃
¤𝐾𝑡
𝐾𝑡

(
𝐾𝜃𝑡

∫ ∞
𝑧
𝑡

𝛼𝑒−𝛼𝑧Υ(𝑧, 𝑡)1{𝑧> 𝜃
𝛼
ln𝐾𝑡 }𝑑𝑧 − Υ

(
𝜃

𝛼
ln𝐾𝑡 , 𝑡

)
1{𝑧

𝑡
≤ 𝜃
𝛼
ln𝐾𝑡 }

)
(27)

Finally, adjoint corresponding to 𝜇(𝑧, 𝑡) yields:

(𝜌 − 𝜂)Υ(𝑧, 𝑡) = ¤Υ(𝑧, 𝑡) + 𝛽𝜕Υ(𝑧, 𝑡)
𝜕𝑧

+ 𝜈
2

2

𝜕2Υ(𝑧, 𝑡)
𝜕𝑧2

+ 1

𝜎 − 1
𝑐
1−𝛾
𝑡

𝑀𝑡

(
𝑒𝑧

𝑄𝑡

)𝜎−1
− 𝜔𝑡 (F + 𝐼𝑡)

+ 𝜗

1 − 𝛿 𝐼
1−𝛿
𝑡

(
𝜒𝑡 + 𝐾𝜃𝑡

∫ ∞
𝑧
𝑡

𝛼𝑒−𝛼𝑧Υ(𝑧, 𝑡)1𝑧> 𝜃
𝛼
ln𝐾𝑡

𝑑𝑧

)
(28)

where I used 𝑀𝑡 and 𝑄𝑡 as defined in the main text so that∫
𝑧≥𝑧

𝑡

𝜇(𝑧, 𝑡)𝑑𝑧 = 𝑀𝑡 and
∫
𝑧≥𝑧

𝑡

𝑒(𝜎−1)𝑧𝜇(𝑧, 𝑡)𝑑𝑧 = 𝑀𝑡𝑄
𝜎−1
𝑡

Finally, the transversality conditions are

0 = lim
𝑡→∞

𝑒−(𝜌−𝜂)𝑡Ξ𝑡𝑧𝑡 = lim
𝑡→∞

𝑒−(𝜌−𝜂)𝑡𝜒𝑡𝐾𝑡 = lim
𝑡→∞

𝑒−(𝜌−𝜂)𝑡Υ(𝑧, 𝑡)𝜇(𝑧, 𝑡)

Combining Equation 24 and Equation 25 =⇒ 𝐼𝑡 =

(
𝜗

𝜀

) 1
𝛿

=⇒ as in equilibrium!

Plugging Equation 25 and Equation 23 into Equation 28 and using𝑂 ≡ 𝛿
1−𝛿

(
𝜗
𝜀

) 1
𝛿 (as in equilibrium):

(𝜌 − 𝜂)Υ(𝑧, 𝑡) = ¤Υ(𝑧, 𝑡) + 𝛽𝜕Υ(𝑧, 𝑡)
𝜕𝑧

+ 𝜈
2

2

𝜕2Υ(𝑧, 𝑡)
𝜕𝑧2

+ 𝜔𝑡 ©­« 1

𝜎 − 1
𝐿𝑡

𝑀𝑡

(
𝑒𝑧

𝑄𝑡

)𝜎−1
− (F −𝑂)ª®¬
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Change of coordinates

With stationarity in mind, it is going to be helpful to work with relative coordinates: 𝑞 = 𝑧 − 𝑧
𝑡
. For

𝑞 ≥ 0, define the value function 𝑉SP(𝑞, 𝑡) and cross-sectional distribution 𝑚(𝑞, 𝑡) by

𝑉SP(𝑞, 𝑡) = Υ(𝑞 + 𝑧
𝑡
, 𝑡) and 𝑚(𝑞, 𝑡) = 𝜇(𝑞 + 𝑧

𝑡
, 𝑡)

Using the chain rule and ¤𝑧
𝑡
= 𝑑𝑡 , the planner’s HJB becomes:

(𝜌 − 𝜂)𝑉SP(𝑞, 𝑡) = ¤𝑉SP(𝑞, 𝑡) + (𝛽 − 𝑑𝑡)
𝜕𝑉SP(𝑞, 𝑡)

𝜕𝑞
+ 𝜈

2

2

𝜕2𝑉SP(𝑞, 𝑡)
𝜕𝑞2

+ 𝜔𝑡


1

𝜎 − 1
𝐿𝑡

𝑀𝑡

(
𝑄
𝑡

𝑄𝑡

)𝜎−1
𝑒(𝜎−1)𝑞 − (F −𝑂)


The KFE is as in Equation 9. Equation 24, Equation 26, and Equation 27 become:

𝜔𝑡 = 𝜀

©­­­«𝜒𝑡 + 𝐾
𝜃
𝑡 𝑄
−𝛼
𝑡

∫ ∞
0
𝛼𝑒−𝛼𝑞𝑉SP(𝑞, 𝑡)1𝑞>ln 𝐾

𝜃
𝛼
𝑡
𝑄
𝑡


𝑑𝑞

ª®®®¬ , (29)

(𝜌 − 𝜂)Ξ𝑡 = ¤Ξ𝑡 −
𝜈2

2

[
𝜕𝑉SP(0, 𝑡)

𝜕𝑞

𝜕𝑚(0, 𝑡)
𝜕𝑞

+𝑉SP(0, 𝑡) 𝜕
2𝑚(0, 𝑡)
𝜕𝑞2

]
−

(
𝜀𝑆𝑡 +

𝜗

1 − 𝛿 𝐼
1−𝛿
𝑡 𝑀𝑡

)
𝛼𝐾𝜃𝑡 𝑄

−𝛼
𝑡
𝑉SP(0, 𝑡)1{ 𝜃𝛼 ln𝐾𝑡<0} , (30)

(𝜌 − 𝜂)𝜒𝑡 = ¤𝜒𝑡 + 𝜃
¤𝐾𝑡
𝐾𝑡

©­­­«𝐾
𝜃
𝑡 𝑄
−𝛼
𝑡

∫ ∞
0
𝛼𝑒−𝛼𝑞𝑉SP(𝑞, 𝑡)1𝑞>ln 𝐾

𝜃
𝛼
𝑡
𝑄
𝑡


𝑑𝑞 −𝑉SP ©­«ln

𝐾
𝜃
𝛼

𝑡

𝑄
𝑡

, 𝑡
ª®¬1ln 𝐾

𝜃
𝛼
𝑡
𝑄
𝑡
>0


ª®®®¬

(31)

Finally, the transversality conditions become:

0 = lim
𝑡→∞

𝑒−(𝜌−𝜂)𝑡Ξ𝑡𝑧𝑡 = lim
𝑡→∞

𝑒−(𝜌−𝜂)𝑡𝜒𝑡𝐾𝑡 = lim
𝑡→∞

𝑒−(𝜌−𝜂)𝑡𝑉SP(𝑞, 𝑡)𝑚(𝑞, 𝑡)

And Assumption 5 becomes

lim
𝑞→∞

𝑉SP(𝑞, 𝑡)𝑚(𝑞, 𝑡) = 0 and lim
𝑞→∞

𝑉SP(𝑞, 𝑡) 𝜕𝑚(𝑞, 𝑡)
𝜕𝑞

= 0 .
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Balanced Growth Path

The definition of BGP was given in Definition 2. Proposition 1 still applies. Here again, I focus on
the BGP satisfying Assumption 3 – as the below will make clear, Equation 22 is sufficient since:(

𝑄𝛼
𝑡

𝐾𝜃𝑡

)FB

≥
(
𝑄𝛼
𝑡

𝐾𝜃𝑡

)DE

.

Since the KFE is unchanged, 𝑓𝑝 (𝑞) is as in equilibrium. For the HJB, guess and verify 𝑉SP(𝑞, 𝑡) =
𝜔𝑡V(𝑞). As I will show, this is not an abuse of notation, asV(𝑞) will coincide with the function
defined in Proposition 3. To get there, note that

Equation 23 =⇒ ¤𝜔𝑡
𝜔𝑡

= (1 − 𝛾)𝑔 − 𝜂 ,

so that by plugging back into the HJB, we knowVSP(𝑞) satisfies the following ODE:

(𝜌 + (𝛾 − 1)𝑔)V(𝑞) = (𝛽 − 𝑔𝑄)V′(𝑞) +
𝜈2

2
V′′(𝑞) + 1

𝜎 − 1
𝐿𝑡

𝑀𝑡

(
𝑄
𝑡

𝑄𝑡

)𝜎−1
𝑒(𝜎−1)𝑞 − (F −𝑂)

This matches the ODE I solve in Appendix B.1.2 to prove Proposition 3. What remains to be shown
is that the boundary conditions are the same. The ones at 0 follow from Equation 30 combined
with Ξ𝑡 = 0 along the BGP. The latter follows directly from 𝑔𝑄 > 0 if 𝜃 > 0 and from 𝑄

𝑡
> 𝐾

𝜃
𝛼

𝑡

otherwise. As such, the TVC for Ξ𝑡 is trivially satisfied and:

−𝜈
2

2
𝜔𝑡

[
V′(0) 𝑓 ′𝑝 (0) + V(0) 𝑓 ′′𝑝 (0)

]
= 𝜂𝐾𝑡𝛼𝐾

𝜃
𝑡 𝑄
−𝛼
𝑡
V(0)

Suppose V(0) ≠ 0, then the growth rate of the LHS is (1 − 𝛾)𝑔 − 𝜂 while that of the RHS is 𝜂,
which is a contradiction. HenceV(0) = 0. Since 𝑓 ′′𝑝 (0) > 0, it follows thatV′(0) = 0. The last
boundary condition will follow from Assumption 5, which requires

lim
𝑞→∞
V(𝑞) 𝑓𝑝 (𝑞) = 0 and lim

𝑞→∞
V(𝑞) 𝑓 ′𝑝 (𝑞) = 0

In addition to the requirements 𝛼 > 𝜎 − 1 and 𝜁 > 𝜎 − 1, these lead to the inequality constraint on
V(𝑞) (see Appendix B.1.2). As a result, we end up with the same ODE and boundary condition so
thatV(𝑞) is indeed the same.

Finally, to obtain the planner’s analogue of the free entry condition, divide both sides of
Equation 29 by 𝜔𝑡 , which yields

1

𝜀
=
𝜒𝑡

𝜔𝑡
+ 𝐾𝜃𝑡 𝑄−𝛼𝑡

∫ ∞
0
𝛼𝑒−𝛼𝑞V(𝑞)𝑑𝑞 =⇒ ¤𝜒𝑡

𝜒𝑡
=
¤𝜔𝑡
𝜔𝑡

= (1 − 𝛾)𝑔 − 𝜂 (32)
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Plugging this growth rate of ¤𝜒𝑡
𝜒𝑡

into Equation 31,

𝜌 + (𝛾 − 1)𝑔 =
𝜔𝑡

𝜒𝑡
𝜃𝜂
𝐾𝜃𝑡

𝑄𝛼
𝑡

∫ ∞
0
𝛼𝑒−𝛼𝑞V(𝑞)𝑑𝑞 =⇒ 𝜒𝑡

𝜔𝑡
=

𝜃𝜂

𝜌 + (𝛾 − 1)𝑔𝐾
𝜃
𝑡 𝑄
−𝛼
𝑡

∫ ∞
0
𝛼𝑒−𝛼𝑞V(𝑞)𝑑𝑞

Equation 32
=⇒ 1 = 𝜀

(
1 + 𝜃𝜂

𝜌 + (𝛾 − 1)𝑔

)
𝐾𝜃𝑡 𝑄

−𝛼
𝑡

∫ ∞
0
𝛼𝑒−𝛼𝑞V(𝑞)𝑑𝑞

This is the planner’s analogue of the free entry condition, and it is the only condition that differs
across the first best and equilibrium. That the level of incumbent innovation per product (𝐼) is
efficient might seem surprising at first, as this activity generates positive knowledge spillovers – just
as much as the entry of new firms. The way to think about it is as follows. Due to spillovers, there
is too little aggregate innovation in equilibrium. However, the incumbent’s innovation technology
(Equation 2) satisfies an Inada condition at 0. So, both in equilibrium and the first best, initial units
of innovation are carried out by incumbents – until diminishing returns push the marginal product
from this technology to 𝜀, at which point the rest of innovation to be done is carried with the linear
entry technology (new firms). Along an interior BGP, this point is necessarily reached, so that the
underprovision of innovation shows up entirely along the entry of new firms margin.

B.3 Derivation of the social rate of return to R&D

Here I derive the social rate of return to R&D as the return on a variational argument around a BGP
(Jones and Williams, 1998). For these purposes, note that the economy is simply given by:

𝑌𝑡 = 𝐿𝑡𝑄
𝑡
𝐴

1
𝜎−1
𝑡 where 𝐴𝑡 ≡ 𝐴

∫ ∞
0
𝑒(𝜎−1)𝑞𝑚(𝑞, 𝑡)𝑑𝑞

¤𝑚(𝑞, 𝑡) =
(
𝑔𝑄 − 𝛽

) 𝜕𝑚(𝑞, 𝑡)
𝜕𝑞

+ 𝜈
2

2

𝜕2𝑚(𝑞, 𝑡)
𝜕𝑞2

+ 𝜀𝑅𝑡𝐾𝜃𝑡 𝑄−𝛼𝑡 𝛼𝑒−𝛼𝑞

𝑚(0, 𝑡) = 0

¤𝐾𝑡 = 𝜀𝑅𝑡

𝑁𝑡 = 𝐿𝑡 + 𝑅𝑡 + (F −𝑂)𝑀𝑡 where 𝑅𝑡 ≡ 𝑆𝑡 +
1

1 − 𝛿 𝐼𝑀𝑡 .

Denoting by ∇ deviations from the initial balanced growth path, note that from the law of motion:

∀𝑡, ∇ ¤𝑚(𝑞, 𝑡) = L∇𝑚(𝑞, 𝑡) + 𝜀𝛼𝑒−𝛼𝑞
(
𝐾𝜃𝑡 𝑄

−𝛼
𝑡
∇𝑅𝑡 + 𝜃𝐾𝜃−1𝑡 𝑄−𝛼

𝑡
𝑅𝑡∇𝐾𝑡 − 𝐾𝜃𝑡 𝛼𝑄−𝛼−1𝑡

𝑅𝑡∇𝑄
𝑡

)
where L ≡ −(𝛽 − 𝑔𝑄)𝜕𝑞 +

𝜈2

2
𝜕𝑞𝑞 .

The specific variational argument of interest is:
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1. from 𝑡 to 𝑡 + 𝑑𝑡, the economy does more R&D by reducing 𝐿𝑡 and raising 𝑅𝑡 ;

2. from 𝑡 + 𝑑𝑡 to 𝑡 + 2𝑑𝑡, the economy “eats the proceeds” by doing sufficiently less R&D to be
back at initial BGP path by 𝑡 + 2𝑑𝑡.

The social rate of return is then defined as the rate of return on this variational argument as 𝑑𝑡 → 0:

𝑟̃ ≡ lim
𝑑𝑡→0

∇𝑌𝑡+𝑑𝑡 − 𝑌𝑡
𝐿𝑡
∇𝑅𝑡

𝑌𝑡
𝐿𝑡
∇𝑅𝑡𝑑𝑡

.

Intuitively, this is a rate of return because 𝑌𝑡
𝐿𝑡
∇𝑅𝑡 is the amount of output (and hence consumption)

that the variational argument sacrifices at 𝑡, while ∇𝑌𝑡+𝑑𝑡 is the resulting increase in output at 𝑡 + 𝑑𝑡.
Since 𝑚 is a state variable and the variational argument starts at 𝑡, ∇𝑚(𝑞, 𝑡) = 0, so

𝑚(𝑞, 𝑡 + 𝑑𝑡) = 𝑚(𝑞, 𝑡) + ¤𝑚(𝑞, 𝑡)𝑑𝑡 =⇒ ∇𝑚(𝑞, 𝑡 + 𝑑𝑡) = 𝜀𝑄−𝛼
𝑡
𝐾𝜃𝑡 𝛼𝑒

−𝛼𝑞∇𝑅𝑡𝑑𝑡

In contrast

∇𝑚(𝑞, 𝑡 + 2𝑑𝑡) = ∇𝑚(𝑞, 𝑡 + 𝑑𝑡) + ∇ ¤𝑚(𝑞, 𝑡 + 𝑑𝑡)𝑑𝑡

= ∇𝑚(𝑞, 𝑡 + 𝑑𝑡) +
(
L∇𝑚(𝑞, 𝑡 + 𝑑𝑡) + 𝜀𝑄−𝛼

𝑡+𝑑𝑡𝛼𝑒
−𝛼𝑞

(
𝐾𝜃𝑡+𝑑𝑡∇𝑅𝑡+𝑑𝑡 + 𝜃𝐾

𝜃−1
𝑡+𝑑𝑡∇𝐾𝑡+𝑑𝑡𝑅𝑡+𝑑𝑡

))
𝑑𝑡

with L∇𝜇(𝑞, 𝑡 + 𝑑𝑡) = 𝜀𝑄−𝛼
𝑡
𝐾𝜃𝑡 𝛼𝑒

−𝛼𝑞
(
(𝛽 − 𝑔𝑄)𝛼 +

𝜈2

2
𝛼2

)
∇𝑅𝑡𝑑𝑡

¤𝐾𝑡+𝑑𝑡 = 𝐾𝑡 + 𝜀𝑅𝑡𝑑𝑡 =⇒ ∇𝐾𝑡+𝑑𝑡 = 𝜀∇𝑅𝑡𝑑𝑡

The variational argument requires ∇𝑚(𝑞, 𝑡 + 2𝑑𝑡) = 0. Solving for ∇𝑅𝑡+𝑑𝑡 in terms of ∇𝑅𝑡 yields

−∇𝑅𝑡+𝑑𝑡 =
(
𝑄
𝑡

𝑄
𝑡+𝑑𝑡

)−𝛼 (
𝐾𝑡

𝐾𝑡+𝑑𝑡

)𝜃
∇𝑅𝑡 +

[(
𝑄
𝑡

𝑄
𝑡+𝑑𝑡

)−𝛼 (
𝐾𝑡

𝐾𝑡+𝑑𝑡

)𝜃 ( (
𝛽 − 𝑔𝑄

)
𝛼 + 𝜈

2

2
𝛼2

)
+ 𝜃𝜀 𝑅𝑡+𝑑𝑡

𝐾𝑡+𝑑𝑡

]
∇𝑅𝑡𝑑𝑡 .

The increase in output at 𝑡 + 𝑑𝑡 is due to higher TFP and higher productional labor:

𝑌𝑡+𝑑𝑡 = 𝐿𝑡+𝑑𝑡𝑄
𝑡+𝑑𝑡𝐴

1
𝜎−1
𝑡+𝑑𝑡 =⇒ ∇𝑌𝑡+𝑑𝑡 =

𝑌𝑡+𝑑𝑡
𝐿𝑡+𝑑𝑡

∇𝐿𝑡+𝑑𝑡 +
1

𝜎 − 1
𝑌𝑡+𝑑𝑡
𝐴𝑡+𝑑𝑡

∇𝐴𝑡+𝑑𝑡

Now
∇𝐿𝑡+𝑑𝑡 + (F −𝑂)∇𝑀𝑡+𝑑𝑡 + ∇𝑅𝑡+𝑑𝑡 = 0 and ∇𝑀𝑡+𝑑𝑡 = 𝐾

𝜃
𝑡 𝑄
−𝛼
𝑡
𝜀∇𝑅𝑡𝑑𝑡

=⇒ ∇𝐿𝑡+𝑑𝑡 =
𝑄−𝛼
𝑡
𝐾𝜃𝑡

𝑄−𝛼
𝑡+𝑑𝑡𝐾

𝜃
𝑡+𝑑𝑡
∇𝑅𝑡+

[
𝑄−𝛼
𝑡
𝐾𝜃𝑡

𝑄−𝛼
𝑡+𝑑𝑡𝐾

𝜃
𝑡+𝑑𝑡

( (
𝛽 − 𝑔𝑄

)
𝛼 + 𝜈

2

2
𝛼2

)
+ 𝜃𝜀 𝑅𝑡+𝑑𝑡

𝐾𝑡+𝑑𝑡
− 𝐾𝜃𝑡 𝑄−𝛼𝑡 𝜀(F −𝑂)

]
∇𝑅𝑡𝑑𝑡
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=⇒ ∇𝑌𝑡+𝑑𝑡 =
𝑌𝑡+𝑑𝑡
𝐿𝑡+𝑑𝑡

(
𝑄
𝑡

𝑄
𝑡+𝑑𝑡

)−𝛼 (
𝐾𝑡

𝐾𝑡+𝑑𝑡

)𝜃
∇𝑅𝑡 +

1

𝜎 − 1
𝑌𝑡+𝑑𝑡
𝐴𝑡+𝑑𝑡

𝜀𝑄−𝛼
𝑡
𝐾𝜃𝑡

𝛼

𝛼 − (𝜎 − 1) ∇𝑅𝑡𝑑𝑡

+ 𝑌𝑡+𝑑𝑡
𝐿𝑡+𝑑𝑡

[(
𝑄
𝑡

𝑄
𝑡+𝑑𝑡

)−𝛼 (
𝐾𝑡

𝐾𝑡+𝑑𝑡

)𝜃 ( (
𝛽 − 𝑔𝑄

)
𝛼 + 𝜈

2

2
𝛼2

)
+ 𝜃𝜀 𝑅𝑡+𝑑𝑡

𝐾𝑡+𝑑𝑡
− 𝐾𝜃𝑡 𝑄−𝛼𝑡 𝜀(F −𝑂)

]
∇𝑅𝑡𝑑𝑡

=⇒
∇𝑌𝑡+𝑑𝑡 − 𝑌𝑡

𝐿𝑡
∇𝑅𝑡

𝑌𝑡
𝐿𝑡
∇𝑅𝑡𝑑𝑡

=
1

𝑑𝑡

[
𝑌𝑡+𝑑𝑡
𝐿𝑡+𝑑𝑡
𝑌𝑡
𝐿𝑡

(
𝑄
𝑡

𝑄
𝑡+𝑑𝑡

)−𝛼 (
𝐾𝑡

𝐾𝑡+𝑑𝑡

)𝜃
− 1

]
+ 1

𝜎 − 1

𝑌𝑡+𝑑𝑡
𝐴𝑡+𝑑𝑡
𝑌𝑡
𝐿𝑡

𝜀𝑄−𝛼
𝑡
𝐾𝜃𝑡

𝛼

𝛼 − (𝜎 − 1)

+
𝑌𝑡+𝑑𝑡
𝐿𝑡+𝑑𝑡
𝑌𝑡
𝐿𝑡

[(
𝑄
𝑡

𝑄
𝑡+𝑑𝑡

)−𝛼 (
𝐾𝑡

𝐾𝑡+𝑑𝑡

)𝜃 ( (
𝛽 − 𝑔𝑄

)
𝛼 + 𝜈

2

2
𝛼2

)
+ 𝜃𝜀 𝑅𝑡+𝑑𝑡

𝐾𝑡+𝑑𝑡
− 𝐾𝜃𝑡 𝑄−𝛼𝑡 𝜀(F −𝑂)

]
Define

𝑃𝐴𝑡 ≡
𝑌𝑡

𝐿𝑡
𝑄𝛼
𝑡
𝐾−𝜃𝑡

Then taking limits yields

𝑟̃ =
¤𝑃𝐴𝑡
𝑃𝐴𝑡
+ (𝛽 − 𝑔𝑄)𝛼 +

𝜈2

2
𝛼2 + 𝜃𝜀 𝑅𝑡

𝐾𝑡
− 𝜀(F −𝑂)𝐾𝜃𝑡 𝑄−𝛼𝑡 +

1
𝜎−1

𝑌𝑡
𝐴𝑡

𝑃𝐴𝑡

𝛼

𝛼 − (𝜎 − 1) 𝜀

with
¤𝑃𝐴𝑡
𝑃𝐴𝑡

= 𝑔 ; ¤𝐾𝑡 = 𝜀𝑅𝑡 ;
¤𝐾𝑡
𝐾𝑡

= 𝜂 ; 𝐴𝑡 =

∫ ∞
0
𝑒(𝜎−1)𝑞𝑀𝑡

𝛼𝜁

𝜁 − 𝛼 (𝑒
−𝛼𝑞 − 𝑒−𝜁𝑞)𝑑𝑞

=⇒ 𝑟̃ = 𝑔 + (𝛽 − 𝑔𝑄)𝛼 +
𝜈2

2
𝛼2 + 𝜃𝜂 − 𝜀(F −𝑂)𝐾𝜃𝑡 𝑄−𝛼𝑡 +

𝐿𝑡

𝑀𝑡

𝜁 − (𝜎 − 1)
𝜁 (𝜎 − 1) 𝜀𝐾

𝜃
𝑡 𝑄
−𝛼
𝑡

This gives the social rate of return to R&D as a function of the allocations. Along the decentralization
equilibrium, these allocations satisfy

𝜁 − (𝜎 − 1)
𝜁 (𝜎 − 1)

𝐿𝑡

𝑀𝑡

= (F −𝑂) 𝛼

𝛼 − (𝜎 − 1)
𝜉

𝜉 + 𝜎 − 1
𝑟 − [𝑔 + (𝜎 − 1) (𝛽 − 𝑔𝑄) + 𝜈2

2 (𝜎 − 1)
2]

𝑟 − 𝑔

𝜀𝐾𝜃𝑡 𝑄
−𝛼
𝑡

=
𝑟 − 𝑔
F −𝑂

𝛼 + 𝜉
𝜉

𝛼 − (𝜎 − 1)
𝜎 − 1

=⇒ 𝑟̃DE = 𝑔 + (𝛽 − 𝑔𝑄)𝛼 +
𝜈2

2
𝛼2 + 𝜃𝜂 + (𝑟 − 𝑔)

(
1 + 𝛼

𝜉

) (
1 − 𝛼

𝜎 − 1

)
+ 𝛼(𝛼 + 𝜉)
(𝜎 − 1) (𝜉 + 𝜎 − 1)

(
𝑟 − 𝑔 − (𝜎 − 1) (𝛽 − 𝑔𝑄) − (𝜎 − 1)2

𝜈2

2

)
But from the definition of 𝜉 in Proposition 3 :

𝜈2

2
𝜉2 − (𝛽 − 𝑔𝑄)𝜉 = 𝑟 − 𝑔
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Hence

𝑟̃DE = 𝑔 + (𝛽 − 𝑔𝑄)𝛼 +
𝜈2

2
𝛼2 + 𝜃𝜂 + (𝑟 − 𝑔)𝛼 + 𝜉

𝜉

(
1 − 𝛼

𝜎 − 1

)
+ 𝛼(𝛼 + 𝜉)

𝜎 − 1

(
𝜈2

2
(𝜉 − (𝜎 − 1)) − (𝛽 − 𝑔𝑄)

)
= 𝑔 + (𝛽 − 𝑔𝑄)𝛼 +

𝜈2

2
𝛼2 + 𝜃𝜂 + (𝑟 − 𝑔)𝛼 + 𝜉

𝜉

(
1 − 𝛼

𝜎 − 1

)
+ 𝛼(𝛼 + 𝜉)
𝜉 (𝜎 − 1)

(
𝑟 − 𝑔 − 𝜈

2

2
𝜉 (𝜎 − 1)

)
= 𝜃𝜂 + 𝑔 + (𝛽 − 𝑔𝑄)𝛼 +

𝜈2

2
𝛼2 + (𝛼 + 𝜉)

(
𝜈2

2
𝜉 − (𝛽 − 𝑔𝑄) −

𝜈2

2
𝛼

)
= 𝜃𝜂 + 𝑔 + 𝜈

2

2
𝜉2 − (𝛽 − 𝑔𝑄)𝜉 = 𝜃𝜂 + 𝑔 + 𝑟 − 𝑔 =⇒ 𝑟̃DE = 𝑟 + 𝜃𝜂

B.4 Proof of Proposition 5 and Proposition 6

The unconditional density ℓ(𝑎) is obtained by averaging the conditional density ℓ(𝑎 |𝑞) over the
distribution of initial draws, noting that ℓ(𝑎 |𝑞) is the density of the first-passage time from above of
a drifted Brownian motion (see equation 3.2.13 in Redner (2001)):

ℓ(𝑎) =
∫ ∞
0
𝛼𝑒−𝛼𝑞ℓ(𝑎 |𝑞)𝑑𝑞 with ℓ(𝑎 |𝑞) = 𝑞

𝜈
√
2𝜋𝑎3

exp

(
−

(
𝑞 +

(
𝛽 − 𝑔𝑄

)
𝑎
)2

2𝜈2𝑎

)
.

Turning to the integral equation; for the firm to have exited by age 𝐴, its initial product must have
died at some age 0 ≤ 𝑎 ≤ 𝐴. With L the initial product’s lifespan, by the law of total probability:

Γ(𝐴) = Pr( 𝑓 ’s lifespan ≤ 𝐴) =
∫ 𝐴

0
ℓ(𝑎) Pr( 𝑓 ’s lifespan ≤ 𝐴 | L = 𝑎) 𝑑𝑎 .

If firms were forever single product, the conditional probability in above expression would be 1.
With 𝑥 > 0, and conditional on L = 𝑎, the initial product may give birth at ages 𝑠 ∈ (0, 𝑎). By the
recursive structure of the branching process, a birth at age 𝑠 produces a lineage that is obsolete
by age 𝐴 with probability Γ(𝐴 − 𝑠). Since births on (0, 𝑎) form a Poisson point process of rate 𝑥,
splitting this interval into subintervals of length Δ, indexed by 𝑖 and with midpoints 𝑠𝑖:

Pr( 𝑓 ’s lifespan ≤ 𝐴 | L = 𝑎) = lim
Δ↓0

∏
𝑖

(𝑥Δ)Γ(𝐴 − 𝑠𝑖) + (1 − 𝑥Δ)1 = lim
Δ↓0

∏
𝑖

exp (𝑥Δ [Γ(𝐴 − 𝑠𝑖) − 1])

= lim
Δ↓0

exp

(∑︁
𝑖

𝑥Δ [Γ(𝐴 − 𝑠𝑖) − 1]
)
= exp

(∫ 𝑎

0
𝑥 [Γ(𝐴 − 𝑠) − 1] 𝑑𝑠

)
.

This leverages that {𝑛 𝑓 (𝑎)}𝑎≥0 is a single-type Crump–Mode–Jagers (general age-dependent)
branching process; see Crump and Mode (1968, 1969) for foundational theory and Jagers (1975)
for applications in population dynamics.
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B.5 Proof of Proposition 7

Integrating both sides of the 𝑛th PDE over (0,∞)𝑛 and using linearity of the integral yields:∫
q∈(0,∞)𝑛

(𝜂 + 𝑥𝑛) 𝑓𝑛 (q) 𝑑q =

∫
q∈(0,∞)𝑛

𝑛∑︁
𝑗=1

[ (
𝑔𝑄 − 𝛽

) 𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

+ 𝜈2

2

𝜕2 𝑓𝑛 (q)
𝜕𝑞2

𝑗

]
𝑑q

+
∫

q∈(0,∞)𝑛
𝑥
Ψ𝑛−1
Ψ𝑛

𝑛∑︁
𝑗=1

𝛼𝑒−𝛼𝑞 𝑗 𝑓𝑛−1
(
q\ 𝑗

)
𝑑q

+ 𝜈2

2

𝑛 Ψ𝑛+1
Ψ𝑛

1

𝑛 + 1
𝑛+1∑︁
𝑗=1

∫
q∈(0,∞)𝑛

𝜕 𝑓𝑛+1
(
q 𝑗→0

)
𝜕𝑞 𝑗

𝑑q

The goal is to simplify each of four integrals that appear in the expression. Starting with the LHS,

𝑓𝑛 pdf on (0,∞)𝑛 =⇒
∫

q∈(0,∞)𝑛
(𝜂 + 𝑥𝑛) 𝑓𝑛 (q) 𝑑q = 𝜂 + 𝑥𝑛 .

On the RHS, three integrals show up:

• Since 𝑓𝑛−1 is a pdf on (0,∞)𝑛−1 and 𝛼𝑒−𝛼𝑞 a pdf on (0,∞) ,∫
q∈(0,∞)𝑖

𝑥
Ψ𝑛−1
Ψ𝑛

𝑛∑︁
𝑗=1

𝛼𝑒−𝛼𝑞 𝑗 𝑓𝑖−1
(
q\ 𝑗

)
𝑑q

=
𝑛∑︁
𝑗=1

𝑥
Ψ𝑛−1
Ψ𝑛

(∫ ∞
0
𝛼𝑒−𝛼𝑞 𝑗 𝑑𝑞 𝑗

) (∫
q\ 𝑗∈(0,∞)𝑛−1

𝑓𝑛−1
(
q\ 𝑗

)
𝑑q\ 𝑗

)
=

𝑛∑︁
𝑗 = 1

𝑥
Ψ𝑛−1
Ψ𝑛

= 𝑛 𝑥
Ψ𝑛−1
Ψ𝑛

• Leveraging the definition of 𝜆𝑛 for all 𝑛 (specifically for 𝑛 + 1)

𝜈2

2

𝑛 Ψ𝑛+1
Ψ𝑛

1

𝑛 + 1
𝑛+1∑︁
𝑗=1

∫
q∈(0,∞)𝑛

𝜕 𝑓𝑛+1
(
q 𝑗→0

)
𝜕𝑞 𝑗

𝑑q =
𝑛 Ψ𝑛+1
Ψ𝑛

𝜆𝑛+1

• Finally, to evaluate the integral on the first line of the right hand side, define the continuously
differentiable vector field on (0,∞)𝑛:

𝑉 (q) = (𝑉1(q), . . . , 𝑉𝑛 (q)) where 𝑉 𝑗 (q) ≡ 𝑔𝑄 𝑓𝑛 (q) +
𝜈2

2

𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

The divergence of this vector field is

div 𝑉 =
𝑛∑︁
𝑗=1

𝑔𝑄
𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

+ 𝜈2

2

𝜕2 𝑓𝑛 (q)
𝜕𝑞2

𝑗
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=⇒
∫
(0,∞)𝑛

(
𝑔𝑄

𝑛∑︁
𝑗=1

𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

+ 𝜈2

2

𝑛∑︁
𝑗=1

𝜕2 𝑓𝑛 (q)
𝜕𝑞2

𝑗

)
𝑑q =

∫
(0,∞)𝑛

div 𝑉 (q) 𝑑q

I can now apply the divergence theorem on (0, 𝑅)𝑖 and then take limits as 𝑅 → ∞. This
transforms the volume integral of the divergence over the positive orthant into a surface
integral on the hyperplanes delimiting the positive orthant:∫
(0,𝑅)𝑛

div𝑉 (q)𝑑q =
𝑛∑︁
𝑗=1

(∫
{𝑞 𝑗=0}

𝑉 · (−𝑒 𝑗 )𝑑𝑆 +
∫
{𝑞 𝑗=𝑅}

𝐹 · (𝑒 𝑗 )𝑑𝑆
)

=
𝑛∑︁
𝑗=1

(∫
{𝑞 𝑗=0}

−
(
𝑔𝑄 𝑓𝑛 (q) +

𝜈2

2

𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

)
𝑑𝑆 +

∫
{𝑞 𝑗=𝑅}

(
𝑔𝑄 𝑓𝑛 (q) +

𝜈2

2

𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

)
𝑑𝑆

)
=

𝑛∑︁
𝑗=1

(∫
{𝑞 𝑗=0}

−𝜈
2

2

𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

𝑑𝑆 +
∫
{𝑞 𝑗=𝑅}

(
𝑔𝑄 𝑓𝑛 (q) +

𝜈2

2

𝜕 𝑓𝑛 (q)
𝜕𝑞 𝑗

)
𝑑𝑆

)
where the last step uses the boundary condition that 𝑓𝑛 vanishes on any of the hyperplanes
delimiting the positive orthant. Taking limits as 𝑅 →∞, only the first integral within each
sum survives, as both 𝑓𝑛 and its partial derivatives vanish when any of its entries grows
to infinity. And each of these integrals is a surface integral on one of the 𝑛 hyperplanes
delimiting the positive orthant, so the integration is with respect to all variables other than 𝑞 𝑗 ,
where 𝑞 𝑗 itself is zero. Using the notation defined above:∫

(0,∞)𝑛
div 𝑉 (q) =

𝑛∑︁
𝑗=1

−𝜈
2

2

∫
{𝑞 𝑗=0}

𝜕 𝑓𝑖 (q)
𝜕𝑞 𝑗

= − 𝑛 𝜆𝑛

Putting it all together,

𝜂 + 𝑥𝑛 = − 𝑛 𝜆𝑛 + 𝑛 𝑥
Ψ𝑛−1
Ψ𝑛

+ 𝑛Ψ𝑛+1
Ψ𝑛

𝜆𝑛+1

Multiplying both sides by Ψ𝑛
𝑛

, I get:

𝜂

𝑛
Ψ𝑛 = − (𝑥 + 𝜆𝑛) Ψ𝑛 + 𝑥Ψ𝑛−1 + 𝜆𝑛+1Ψ𝑛+1
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B.6 Dimension Reduction

Lemma 1. Given the ansatz from Equation 18, the stationary firm size distribution consists of
sequences Ψ𝑛 and 𝜑𝑛 satisfying the following system of coupled ordinary differential equations:

𝜈2

2
𝜑′′1 (𝑞) + (𝑔𝑄 − 𝛽)𝜑

′
1(𝑞) − (𝜂 + 𝑥)𝜑1(𝑞) = −

𝜂 + 𝜈2

2 𝛼𝜁 − 𝑥
Ψ1

𝛼𝑒−𝛼𝑞 − Ψ2

Ψ1
𝜆2𝜑2(𝑞) ,

and for 𝑛 > 1,
𝜈2

2
𝜑′′𝑛 (𝑞) + (𝑔𝑄 − 𝛽)𝜑′𝑛 (𝑞) − (𝜂 + 𝑛𝑥 + (𝑛 − 1)𝜆𝑛)𝜑𝑛 (𝑞)

= −𝑥Ψ𝑛−1
Ψ𝑛

(𝛼𝑒−𝛼𝑞 + (𝑛 − 1)𝜑𝑛−1(𝑞)) − 𝑛
Ψ𝑛+1
Ψ𝑛

𝜆𝑛+1𝜑𝑛+1(𝑞)

with ∀𝑛 ≥ 1, 𝜑𝑛 (0) = 0 and 𝜆𝑛 = 𝜈2

2 𝜑
′
𝑛 (0).

Proof. For 𝑛 > 1, the 𝑛th ODEs is obtained by plugging in the ansatz into the 𝑛th PDE then
integrating both sides over (0,∞)𝑛−1, so by integrating out all dimensions but one. □

C Computational Appendix

C.1 Solving integral equation from Proposition 6

Γ(𝐴) =
∫ 𝐴

0
ℓ(𝑎) exp

(∫ 𝑎

0
𝑥 [Γ(𝐴 − 𝑠) − 1] 𝑑𝑠

)
𝑑𝑎

As I highlighted in the main text, this can be computed with a marching forward algorithm, as each
Γ(𝐴) only depends on lower ages and Γ(0) = 0. To speed up the process (specifically the inner
integral), define 𝑅(𝐴) = exp

(
−𝑥

∫ 𝐴
0
Γ(𝑢)𝑑𝑢

)
, so that 𝑅0 = 1 and by the fundamental theorem of

calculus 𝑅′(𝐴) = −𝑥𝑅(𝐴)Γ(𝐴) . Now to see how this simplifies the integral equation:

Γ(𝐴) =
∫ 𝐴

0
ℓ(𝑎) exp

(∫ 𝑎

0
𝑥 [Γ(𝐴 − 𝑠) − 1] 𝑑𝑠

)
𝑑𝑎 =

∫ 𝐴

0
ℓ(𝑎) exp

(
𝑥

∫ 𝑎

0
Γ(𝐴 − 𝑠)𝑑𝑠 − 𝑥𝑎

)
𝑑𝑎

=

∫ 𝐴

0
ℓ(𝑎) exp

(
𝑥

∫ 𝐴

𝐴−𝑎
Γ(𝑢)𝑑𝑢 − 𝑥𝑎

)
𝑑𝑎 =

∫ 𝐴

0
ℓ(𝑎) exp

(
𝑥

∫ 𝐴

0
Γ(𝑢)𝑑𝑢 − 𝑥

∫ 𝐴−𝑎

0
Γ(𝑢)𝑑𝑢 − 𝑥𝑎

)
𝑑𝑎

=

∫ 𝐴

0
ℓ(𝑎) exp

(
𝑥

∫ 𝐴

0
Γ(𝑢)𝑑𝑢

)
exp

(
−𝑥

∫ 𝐴−𝑎

0
Γ(𝑢)𝑑𝑢

)
exp (−𝑥𝑎) 𝑑𝑎 =

∫ 𝐴

0
ℓ(𝑎) 1

𝑅(𝐴) 𝑅(𝐴 − 𝑎)𝑒
−𝑥𝑎𝑑𝑎

=⇒ Γ(𝐴)𝑅(𝐴) =
∫ 𝐴

0
𝑒−𝑥𝑎ℓ(𝑎)𝑅(𝐴 − 𝑎)𝑑𝑎

Evaluation of the RHS does not depend on values at 𝐴, since ℓ(0) = 0. So I get Γ(𝐴)𝑅(𝐴) by
simply evaluating the integral. I then get 𝑅(𝐴) using the ODE 𝑅′(𝐴) = −𝑥𝑅(𝐴)Γ(𝐴) and previous
value for 𝑅(𝐴). I then divide Γ(𝐴)𝑅(𝐴) by 𝑅(𝐴) to get Γ(𝐴).
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For the hazard rate, I need Γ′(𝐴). Denoting 𝑌 (𝐴) = Γ(𝐴)𝑅(𝐴), it follows that

Γ′(𝐴) = 𝑌
′(𝐴)
𝑅(𝐴) + 𝑥Γ(𝐴)

2

where 𝑌 ′(𝐴) = 𝑒−𝑥𝐴ℓ(𝐴) − 𝑥
∫ 𝐴

0
𝑒−𝑥𝑎ℓ(𝑎)𝑌 (𝐴 − 𝑎)𝑑𝑎

Because:

𝑌 (𝐴) =
∫ 𝐴

0
𝑒−𝑥𝑎ℓ(𝑎)𝑅(𝐴 − 𝑎)𝑑𝑎

𝑌 ′(𝐴) = 𝑒−𝑥𝐴ℓ(𝐴) +
∫ 𝐴

0
𝑒−𝑥𝑎ℓ(𝑎)𝑅′(𝐴 − 𝑎)𝑑𝑎 since 𝑅(𝐴) = 1

𝑌 ′(𝐴) = 𝑒−𝑥𝐴ℓ(𝐴) − 𝑥
∫ 𝐴

0
𝑒−𝑥𝑎ℓ(𝑎)𝑌 (𝐴 − 𝑎)𝑑𝑎 using ODE for 𝑅 .

To see how this helps getting Γ′(𝐴):

𝑌 (𝐴) = Γ(𝐴)𝑅(𝐴) =⇒ 𝑌 ′(𝐴) = Γ′(𝐴)𝑅(𝐴) + Γ(𝐴)𝑅′(𝐴) =⇒ Γ′(𝐴) = 𝑌
′(𝐴)
𝑅(𝐴) + Γ(𝐴)

𝑅′(𝐴)
𝑅(𝐴)

Using the ODE for 𝑅, this simplifies to

Γ′(𝐴) = 𝑌
′(𝐴)
𝑅(𝐴) + Γ(𝐴)

2𝑥 .

Details for numerical implementation given a set of parameters. To get the hazard rate of firm
exit up to age 20, I work on a discrete age grid with 20500 points between 0 and 20.5. I use the
above algorithm to “fill” D in a single forward march, using Numpy’s builtin numerical integration
with the trapezoid rule.

GMM to identify parameters. My GMM objective is an equally weighted least squares deviations
of model vs empirical hazard rate of firm exit at ages 1 through 19. I use the least squares routine
provided by Python’s SciPy library.

C.2 Solving for stationary firm size distribution

A first transformation of the system. Given that my GMM strategy identifies 𝑥, 𝛼(𝑔𝑄 − 𝛽) =
𝜃𝜂 − 𝛼𝛽, and 𝛼𝜈, I start by rewriting the system from Lemma 1 in terms of these parameter
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combinations and 𝜂. To do so, I do the following change of variables

𝑠 ≡ 𝛼𝑞 and 𝛿𝑛 (𝑠) ≡
𝜑𝑛

(
𝑠
𝛼

)
𝛼

=⇒ 𝜑𝑛 (𝑞) = 𝛼𝛿𝑛 (𝛼𝑞) ,

and note that
𝜈2

2
𝛼𝜁 =

1

2
𝛼

(
𝑔𝑄 − 𝛽

)
+ 1

2

√︃(
𝛼

(
𝑔𝑄 − 𝛽

) )2 + 2𝜂 (𝛼𝜈)2
so that this term in the first ODE is taken care of. Plugging into the initial system yields:

∀𝑛 ≥ 1 , 𝛿𝑛 (0) = 0 ;

∫ ∞
0
𝛿𝑛 (𝑠)𝑑𝑠 = 1 ; 𝜆𝑛 =

(𝛼𝜈)2
2

𝛿′𝑛 (0) ; lim
𝑠→∞

𝛿(𝑠) = lim
𝑠→∞

𝛿′(𝑠) = 0

(𝛼𝜈)2
2

𝛿′′1 (𝑠) + 𝛼(𝑔𝑄 − 𝛽)𝛿
′
1(𝑠) − (𝜂 + 𝑥)𝛿1(𝑠) = −

𝜂 + 𝜈2

2 𝛼𝜁 − 𝑥
Ψ1

𝑒−𝑠 − Ψ2

Ψ1
𝜆2𝛿2(𝑠)

and for 𝑛 > 1

(𝛼𝜈)2
2

𝛿′′𝑛 (𝑠) + 𝛼(𝑔𝑄 − 𝛽)𝛿′𝑛 (𝑠) − (𝜂 + 𝑛𝑥 + (𝑛 − 1)𝜆𝑛) 𝛿𝑛 (𝑠) = −𝑥
Ψ𝑛−1
Ψ𝑛
(𝑒−𝑠 + (𝑛 − 1)𝛿𝑛−1(𝑠)) − 𝑛

Ψ𝑛+1
Ψ𝑛

𝜆𝑛+1𝛿𝑛+1(𝑠)

with the recurrence relation that only depends on identified parameters:{
𝜂 Ψ1 = − (𝑥 + 𝜆1) Ψ1 + 𝜆2Ψ2 + 𝜂 + 𝜈2

2 𝛼 𝜁 − 𝑥

𝜂

𝑛
Ψ𝑛 = − (𝑥 + 𝜆𝑛) Ψ𝑛 + 𝜆𝑛+1Ψ𝑛+1 + 𝑥Ψ𝑛−1 for 𝑛 > 1

The limit (fixed point) of the system becomes

𝛿∞(𝑠) =
𝜏
𝛼

𝜏
𝛼
− 1

(
𝑒−𝑠 − 𝑒− 𝜏𝛼 𝑠

)
where

𝜏

𝛼
= 2

𝛼(𝑔𝑄 − 𝛽)
(𝛼𝜈)2

along with
𝜆∞ = 𝛼(𝑔𝑄 − 𝛽) and

Ψ𝑛+1
Ψ𝑛

∼ 𝑥

𝜆∞
< 1 .

A second transformation of the system. While the above system is in principle solvable, to
guarantee numerical stability I do a second transformation that drastically improves the system’s
conditioning. In that vein, let:

𝑢𝑛 (𝑠) ≡ 𝑒
𝜏
𝛼
𝑠𝛿𝑛 (𝑠) and 𝑅𝑛 ≡

Ψ𝑛

Ψ𝑛+1
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The motivation for working with ratios is that as 𝑛 grows large, Ψ𝑛 converges to zero, while the
ratio of consecutive terms converges to a strictly positive number. Defining the initial condition

𝑅0 =
1

𝑥

𝜂 + 𝜈2

2 𝛼𝜁 − 𝑥
Ψ1

,

The recurrence is then given for all 𝑛 ≥ 1 by

−
(𝜂
𝑛
+ 𝑥 + 𝜆𝑛

)
+ 𝜆𝑛+1
𝑅𝑛
+ 𝑥𝑅𝑛−1 = 0 .

Plugging the recurrence into the RHS to avoid having divisions by 𝑅𝑛, the 𝑛 = 1 ODE becomes:

(𝛼𝜈)2
2

𝑢′′1 (𝑠) = −
[
𝛼(𝑔𝑄 − 𝛽) −

𝜏

𝛼
(𝛼𝜈)2

]
𝑢′1(𝑠) +

[
𝜂 + 𝑥 + 𝜏

𝛼
𝛼(𝑔𝑄 − 𝛽) −

( 𝜏
𝛼

)2 (𝛼𝜈)2
2

]
𝑢1(𝑠)

− 𝑥𝑅0𝑒−(1−
𝜏
𝛼 )𝑠 + [𝑥𝑅0 − (𝜂 + 𝑥 + 𝜆1)] 𝑢2(𝑠) .

The 𝑛 > 1 ODE becomes:

(𝛼𝜈)2
2

𝑢′′𝑛 (𝑠) = −
[
𝛼(𝑔𝑄 − 𝛽) −

𝜏

𝛼
(𝛼𝜈)2

]
𝑢′𝑛 (𝑠) +

[
𝜂 + 𝑛𝑥 + (𝑛 − 1)𝜆𝑛 +

𝜏

𝛼
𝛼(𝑔𝑄 − 𝛽) −

( 𝜏
𝛼

)2 (𝛼𝜈)2
2

]
𝑢𝑛 (𝑠)

− 𝑥𝑅𝑛−1
(
𝑒−(1− 𝜏𝛼 )𝑠 + (𝑛 − 1)𝑢𝑛−1(𝑠)

)
+ 𝑛

[
𝑥𝑅𝑛−1 −

(𝜂
𝑛
+ 𝑥 + 𝜆𝑛

)]
𝑢𝑛+1(𝑠) .

The boundary conditions are with 𝑢𝑛 (0) = 0 ; 𝜆𝑛 =
(𝛼𝜈)2
2 𝑢′𝑛 (0) and, for 𝑠𝑚𝑎𝑥 large enough

𝛿𝑛 (𝑠𝑚𝑎𝑥) = 0 (exponentially decaying tail).

Numerical solution. I transform the system of 2nd order ODEs into a system of 1st order ODEs
by introducing the derivatives 𝑢′ as auxiliary variables. I solve for 𝑢𝑛, 𝑢′𝑛, 𝜆𝑛, and 𝑅𝑛 using solve-bvp
from Python’s Scipy library, which is designed to solve such systems of differential-algebraic
equations. The 𝑛0 I choose for truncation purposes is 25 (and checked robustness to decreasing 𝑛0
to 40), with a tolerance of 10−5 and 𝑠𝑚𝑎𝑥 = 8.

Verification of solution. After solving for 𝑢𝑛 (𝑞), I obtain 𝛿𝑛 (𝑞) using

𝛿𝑛 (𝑠) = 𝑒−
𝜏
𝛼
𝑠𝑢𝑛 (𝑠) .

As discussed in the main text, the theory provides a transparent way to verify the solution:

∞∑︁
𝑛=1

Ψ𝑛𝜑𝑛 (𝑞) =
𝛼 𝜁

𝜁 − 𝛼

(
𝑒−𝛼𝑞 − 𝑒−𝜁𝑞

)
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In terms of what I solved for numerically, this becomes

∞∑︁
𝑛=1

Ψ𝑛𝛿𝑛 (𝑠) =
𝜁/𝛼

𝜁/𝛼 − 1

(
𝑒−𝑠 − 𝑒−

𝜁

𝛼
𝑠
)

where
𝜁

𝛼
=
𝛼(𝑔𝑄 − 𝛽) +

√︁
(𝛼(𝑔𝑄 − 𝛽))2 + 2𝜂(𝛼𝜈)2
(𝛼𝜈)2

.

The absolute deviation between the LHS (computed numerically) and the RHS (closed form) has
mean 0.0003 and maximum 0.0013.

D Data Appendix

This appendix provides detailed information on the data sources, sample construction, and variable
definitions used in the empirical analysis of the paper. Section D.1 describes the product data
used to document the facts in Section 4. Section D.2 describes the firm data used for the main
quantitative estimation in Section 5.

D.1 NielsenIQ Retail Scanner Dataset

Sample Construction. The analysis is restricted to a balanced panel of approximately 25,400
retail stores that are continuously present for the entire 14 year period. This restriction ensures that
product exit is not mechanically driven by store closures.

Each UPC in the data is already assigned to one of roughly 120 product group codes. In
building my sample, I exclude unclassified products, fresh produce, non-scannable (“magnet”)
products, control brands, and products classified under “seasonal”, “prep food-deli”, or groups that
get discontinued by NielsenIQ (deferred modules). These exclusions insure that products in my
sample can be consistently mapped across different retailers at a point in time as well as over time.

Variable definitions. I obtain a UPC’s sales (in $) and volume of sales (quantity sold) by summing
across retailers in a given time period. Dividing the former by the latter yields the average unit
price. A UPC is defined as entering in year 𝑡 if it has zero sales in year 𝑡 − 1 and positive sales in
year 𝑡. A UPC is defined as exiting in year 𝑡 if it has positive sales in year 𝑡 and zero sales in year
𝑡 + 1. A UPC’s age in a given year is defined as the current year minus its first year of appearance in
the sample. UPCs present in 2006 are considered left-censored

Data cleaning. To guarantee accurate measurement of entry and exit, I drop any UPC that records
more than one entry or exit event over the sample period.

To allow for meaningful comparisons of quantity and price within a product group, I harmonize
product size units. First, I convert units to a common standard where possible (e.g., pounds and
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kilograms are converted to ounces; liters and quarts are converted to milliliters). For a small
number of products, NielsenIQ provides a secondary size. If a product’s primary unit does not
match the modal unit of its product group, but its secondary unit does, I use the secondary unit
for harmonization. If after these harmonization steps a product group’s modal unit of measure
accounts for less than 95% of sales, then this group is excluded from my analysis. Similarly, if the
group has fewer than 100 products, it is excluded from the sample.

D.2 Publicly Available U.S. Census Data

To quantify spillovers I use publicly available tabulations based on the U.S. Census Longitudinal
Business Database (LBD). This is an administrative dataset covering the universe of private nonfarm
businesses in the U.S. As it tracks establishments, in tabulations based on this dataset, a firm exits
is defined as all its establishments closing.

Estimation across all private nonfarm businesses. The firm exit rate at ages 1 through 19 that I
use are provided in the replication package of Sterk, Sedláček and Pugsley (2021).

Estimation at the 2-digit sector level. I use the Business Dynamics Statistics, publicly provided
by the U.S. Census Bureau. Specifically, I use the State by Firm Age two-way tabulation, which
provides, for each 2-digit NAICS sector, the number of firms as well as the number of exiting firms
at ages 1, 2, 3, 4, 5, 8, 13, and 18. Since the underlying data source is the LBD (which starts in
1978), I use data from 1996 onward to avoid having any left censored firm in any of my age bins. I
define the firm exit rate in a cell as the number of exiting firms divided by the average number of
firms between last the previous and current year.

E Additional Figures and Tables

E.1 Empirical Results

To document the gradual exit process along both the extensive (number of stores at which UPC is
sold) and intensive (sales per store) margins, I run the following regressions:

log Sales per store𝑝𝑡 = 𝛾𝑝 +
24∑︁
𝑚=1

𝜋𝑚𝐷
𝑚
𝑝𝑡 + 𝛾𝑔𝑡 + 𝜀𝑝𝑡 , (33)

log Number of stores𝑝𝑡 = 𝛾𝑝 +
24∑︁
𝑚=1

𝜅𝑚𝐷
𝑚
𝑝𝑡 + 𝛾𝑔𝑡 + 𝜀𝑝𝑡 ; (34)
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Figure E1: Extensive and intensive margins in the lead up to exit

2424 18 12 6 1
Months To Exit

0.0

0.2

0.4

0.6

0.8

1.0

Sales per store

Number of stores

Notes: Sales per store curve corresponds to path of exp (𝜋𝑚) from Equation 33, normalized such that
exp (𝜋24) = 1; underlying regression has 54M observations. Number of stores curve corresponds to
path of exp (𝜅𝑚) from Equation 34, normalized such that exp (𝜅24) = 1; underlying regression has
54M observations. Vertical bars correspond to 95% confidence intervals, based on SEs clustered at
the group level.

where 𝑝 indexes a UPC, 𝑔 its group (product category), and 𝑡 a month, with 𝛾𝑝 a UPC fixed effect,
𝛾𝑔𝑡 a group-month fixed effect, and 𝐷𝑚

𝑝𝑡 a dummy variable equal to 1 𝑚 months prior to the UPC’s
exit. Figure E1 plots exp (𝜋𝑚) and exp (𝜅𝑚), respectively representing the paths of sales per store
and number of stores in the two years leading up to the UPC’s exit.
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Figure E2: UPC Addition Rate Across Multiproduct Firms

1 5 10
Firm’s Decile In Within-Group Distribution Of UPC Count
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Notes: Cattaneo et al. (2024) binscatter with 10 bins, corresponding to the deciles of the distribution
of UPC count among multiproduct firms within a group in year 𝑡. New UPCs are those for which
the current year is the first year of sales; rates are obtained through division by firm’s UPC count in
corresponding group, averaged between previous and current year. Vertical bars are 95% pointwise
confidence intervals. Horizontal line is inverse-weighted mean, with 95% confidence interval around
it. Underlying number of firm-year observations is 264,809. Single product firms are not shown
because they account for 42% of firms – among them, UPC add rate is 5.2%.

E.2 Quantitative Results
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Table E3: Sensitivity of model-implied hazard rates to the three different statistics

𝜃𝜂 − 𝛼𝛽 𝛼𝜈 𝑥

Model’s hazard rate of firm exit at age 1 9.16 5.98 -1.78

Model’s hazard rate of firm exit at age 2 9.17 2.28 -2.49

Model’s hazard rate of firm exit at age 3 9.07 0.75 -2.98

Model’s hazard rate of firm exit at age 4 8.95 -0.06 -3.34

Model’s hazard rate of firm exit at age 5 8.82 -0.54 -3.63

Model’s hazard rate of firm exit at age 6 8.70 -0.84 -3.86

Model’s hazard rate of firm exit at age 7 8.58 -1.04 -4.06

Model’s hazard rate of firm exit at age 8 8.48 -1.17 -4.22

Model’s hazard rate of firm exit at age 9 8.38 -1.25 -4.37

Model’s hazard rate of firm exit at age 10 8.29 -1.31 -4.49

Model’s hazard rate of firm exit at age 11 8.20 -1.35 -4.60

Model’s hazard rate of firm exit at age 12 8.12 -1.37 -4.69

Model’s hazard rate of firm exit at age 13 8.05 -1.38 -4.78

Model’s hazard rate of firm exit at age 14 7.98 -1.39 -4.86

Model’s hazard rate of firm exit at age 15 7.91 -1.39 -4.92

Model’s hazard rate of firm exit at age 16 7.84 -1.39 -4.98

Model’s hazard rate of firm exit at age 17 7.77 -1.38 -5.04

Model’s hazard rate of firm exit at age 18 7.71 -1.37 -5.08

Model’s hazard rate of firm exit at age 19 7.65 -1.36 -5.13

Notes: The entry in row 𝑖 and column 𝑗 gives the percentage point change in the model-implied
hazard rate of firm exit at age 𝑖 resulting from a 100% change in statistic 𝑗 . These are local
semi-elasticities, evaluated at the estimated values of the three statistics.
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Table E4: Sensitivity of estimated statistics to empirical hazard rates

𝜃𝜂 − 𝛼𝛽 𝛼𝜈 𝑥

Empirical hazard rate of firm exit at age 1 -5.27 18.26 -14.02

Empirical hazard rate of firm exit at age 2 4.51 0.11 7.76

Empirical hazard rate of firm exit at age 3 6.73 -5.19 12.84

Empirical hazard rate of firm exit at age 4 6.86 -6.77 13.30

Empirical hazard rate of firm exit at age 5 6.23 -6.86 12.05

Empirical hazard rate of firm exit at age 6 5.30 -6.27 10.10

Empirical hazard rate of firm exit at age 7 4.25 -5.37 7.90

Empirical hazard rate of firm exit at age 8 3.18 -4.33 5.63

Empirical hazard rate of firm exit at age 9 2.14 -3.23 3.40

Empirical hazard rate of firm exit at age 10 1.13 -2.14 1.26

Empirical hazard rate of firm exit at age 11 0.18 -1.07 -0.79

Empirical hazard rate of firm exit at age 12 -0.73 -0.03 -2.71

Empirical hazard rate of firm exit at age 13 -1.57 0.95 -4.53

Empirical hazard rate of firm exit at age 14 -2.37 1.89 -6.23

Empirical hazard rate of firm exit at age 15 -3.11 2.77 -7.83

Empirical hazard rate of firm exit at age 16 -3.81 3.61 -9.32

Empirical hazard rate of firm exit at age 17 -4.46 4.39 -10.72

Empirical hazard rate of firm exit at age 18 -5.07 5.13 -12.03

Empirical hazard rate of firm exit at age 19 -5.64 5.82 -13.25

Notes: The entry in row 𝑖 and column 𝑗 gives the percent change in statistic 𝑗 resulting from a 1 p.p.
change in the empirical hazard rate of firm exit at age 𝑖. These are local semi-elasticities, evaluated at
the estimated parameter values.
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Figure E3: Firm Exit by Age in Sectors with Largest and Smallest Estimated Wedges

1 2 3 4 5 8 13 18
Firm Age
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20%
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28%
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Hazard Rate of Firm Exit

Mining
Transportation and Warehousing
Information
Arts

Utilities
Finance and Insurance
Management
Health Care

Notes: Sectors in blue are the four in which I estimate the largest wedge. Sectors in orange are the
four in which I estimate the smallest wedge. Dots correspond to empirical moments, each curve is the
model’s fit from a GMM targeting that sector’s profile of firm exit by age. The GMM objective puts
equal weights on ages 1 through 5, and five times the weight on ages 8, 14, and 18. Underlying data is
from Business Dynamics Statistics for the years 1996 to 2019.
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Table E5: GMM Estimation Results Across Sectors

Sector
Firm Share Share Estimation Results

Exit Rate of firms of emp 𝜃𝜂 − 𝛼𝛽 𝛼𝜈 𝑥

Agriculture, Forestry,
8.9% 0.4% 0.1% 11.1% 0.50 0Fishing, and Hunting

Mining, Quarrying,
8.2% 0.3% 0.5% 21.5% 0.38 0.16and Oil and Gas Extraction

Utilities 4.2% 0.1% 0.6% 5.5% 0.62 0

Construction 9.0% 11.6% 5.4% 13.0% 0.57 0

Manufacturing 6.7% 5.1% 11.6% 15.8% 0.36 0.14

Wholesale Trade 7.8% 5.7% 5.0% 15.6% 0.44 0.09

Retail Trade 9.2% 12.2% 13.0% 15.3% 0.55 0.04

Transportation and Warehousing 10.8% 2.8% 3.7% 18.9% 0.70 0

Information 10.2% 1.2% 2.9% 18.4% 0.71 0

Finance & Insurance 7.7% 4.1% 5.3% 10.5% 0.48 0

Real Estate & Leasing 9.1% 4.5% 1.7% 13.2% 0.49 0

Professional, Scientific, & Tech Services 8.5% 12.2% 6.5% 11.7% 0.53 0

Management of Companies & Enterprises 3.6% 0.5% 2.7% 3.3% 0.88 0

Administrative & Support & Waste
9.7% 5.3% 7.9% 14.2% 0.59 0Management & Remediation Services

Educational Services 6.9% 1.3% 2.6% 15.9% 0.41 0.10

Health Care and Social Assistance 6.2% 10.8% 14.3% 7.0% 0.36 0

Arts, Entertainment, and Recreation 8.6% 1.7% 1.7% 25.6% 0.47 0.18

Accommodation and Food Services 10.3% 8.0% 9.8% 16.6% 0.55 0.02

Other Services (except Public Administration) 6.2% 12.0% 4.6% 9.3% 0.57 0

Notes: Underlying data are Business Dynamics Statistics for 1996-2019. The estimation targets the
sector’s profile of firm exit by age, specifically at ages 1, 2, 3, 4, 5, 8, 13, and 18.
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